MPAS-JEDI
plot_diag_omaomb.py
Go to the documentation of this file.
1 import os
2 import numpy as np
3 from copy import deepcopy
4 import matplotlib
5 matplotlib.use('AGG')
6 import matplotlib.pyplot as plt
7 from mpl_toolkits.axes_grid1 import make_axes_locatable
8 import matplotlib.axes as maxes
9 import fnmatch
10 import math
11 import basic_plot_functions
12 import h5py as h5
13 import config as conf
14 import var_utils as vu
15 
16 '''
17 Directory Structure:
18 test/
19  ├── Data/
20  │   ├── obsout_3denvar_bump_sondes_0000.nc4
21  │   ├── obsout_3denvar_bump_sondes_0001.nc4
22  │   ├── ...
23  ├── graphics/
24  │   ├── plot_diag_omaomb.py
25  │   ├── basic_plot_functions.py
26  │   ├── ...
27 '''
28 
29 # columns: var_name unit_used abbr.
30 vardict = { \
31  'air_temperature': [ '(K)', 'T' ] \
32  , 'virtual_temperature': [ '(K)', 'Tv' ] \
33  , 'eastward_wind': [ '(m/s)', 'U' ] \
34  , 'northward_wind': [ '(m/s)', 'V' ] \
35  , 'specific_humidity': [ '(kg/kg)', 'Q' ] \
36  , 'refractivity': [ '(%)', 'Ref' ] \
37  , 'bending_angle': [ '(%)', 'Bnd' ] \
38  , 'brightness_temperature': [ '(K)', 'BT' ] \
39  , 'surface_pressure': [ '(Pa)', 'Ps' ] \
40  }
41 # need add Ps
42  #Note, refractivity: we plot RMSE of OMB/O and OMA/O; refractivity unit: N-unit
43  #Note, bending_angle: we plot RMSE of OMB/O and OMA/O; bending_angle unit: rad
44 
45 def readdata():
46 
47  print_fmt = 'png' #lower fidelity, faster
48  #print_fmt = 'pdf' #higher fidelity, slower
49 
50  plot_allinOneDistri = True # plot profile_group (includes all levels) and sfc_group.
51  plot_eachLevelDistri = True # plot every level separately for profile_group.
52 
53  profile_group = [
54  'sondes',
55  'aircraft',
56  'satwind',
57  'gnssroref',
58  'gnssrobndropp1d',
59  ]
60  sfc_group = [
61  'sfc',
62  ]
63  radiance_group = [
64  'abi_g16',
65  'ahi_himawari8',
66  'amsua_aqua',
67  'amsua_metop-a',
68  'amsua_n15',
69  'amsua_n18',
70  'amsua_n19',
71  'amsua_n19--hydro',
72  'amsua_n19--nohydro',
73  ]
74 
75  all_groups = []
76  all_groups.append(profile_group)
77  all_groups.append(sfc_group)
78  all_groups.append(radiance_group)
79 
80  # Diagnostic oma/omb files located in diagdir
81  diagdir = '../Data/'
82  diagprefix = 'obsout_'
83  diagsuffix = '_*.nc4' #for ctests
84  #diagsuffix = '_*.h5' #for cycling
85  # * in diagsuffix is 4-digit processor rank [0000 to XXXX]
86  #npedigits = 4
87 
88  # Suffixes to required nc variables
89  #observations
90  obs_var = 'ObsValue'
91 
92  #departures
93  depbg_var = 'depbg'
94  depan_var = 'depan'
95 
96  #quality control
97  NOUTER=str(os.getenv('NOUTER',2)) #set equal to number of outer iterations
98  qcbg_var = 'EffectiveQC0' #EffectiveQCi, where i is the iteration for depbg_var
99  qcan_var = 'EffectiveQC'+NOUTER #EffectiveQCi, where i is the iteration for depan_var
100 
101  err_obs = 'ObsError'
102  errstart_var = 'EffectiveError0'
103  errend_var = 'EffectiveError'+NOUTER
104  obsoutfiles = []
105  for files in os.listdir(diagdir):
106  #print(files)
107  if fnmatch.fnmatch(files, diagprefix+'*'+diagsuffix): # 1tile
108  obsoutfiles.append(diagdir+files)
109  #print(obsoutfiles)
110 
111  # Group files by experiment-obstype combination
112  # (e.g., 3dvar_aircraft), where each group
113  # contains files from all PE's
114  exob_groups = [[]]
115  for j, file_name in enumerate(obsoutfiles):
116  # exob_group_name excludes everything outside the first/final '_'
117  exob_group_name = '_'.join(file_name.split("_")[1:][:-1])
118  for i, exob_group in enumerate(exob_groups):
119  if exob_group_name in exob_group:
120  # If exob_group with exob_group_name exists, add new file to it
121  update_group = exob_group
122  update_group.append(file_name)
123  exob_groups[i][:] = update_group
124  break
125  elif i == len(exob_groups)-1:
126  # If group with exob_group_name does not exist, add one
127  new_group = [exob_group_name]
128  new_group.append(file_name)
129  exob_groups.append(new_group)
130  break
131  exob_groups = exob_groups[1:][:]
132 
133  # Loop over unique experiment-obstype groups
134  for exob_group in exob_groups:
135  expt_obs = exob_group[0]
136  print(expt_obs)
137 
138  # Determine obstype from expt_obstype string
139  expt_parts = expt_obs.split("_")
140  nstr = len(expt_parts)
141  obstype = 'none'
142  for i in range(0,nstr):
143  obstype_ = '_'.join(expt_parts[i:nstr])
144  for group in all_groups:
145  if ''.join(obstype_) in group:
146  obstype = obstype_
147 
148  if obstype == 'none':
149  print('obstype not selected, skipping data: '+expt_obs)
150  continue
151 
152  # Select variables with the suffix depbg_var (required for OMB)
153  nc = h5.File(exob_group[1], 'r')
154  varlist = []
155  for node in nc:
156  if type(nc[node]) is h5._hl.group.Group:
157  for var in nc[node]:
158  varlist += [node+'/'+var]
159 
160  bglist = [var for var in varlist if (var[:][:5] == depbg_var)]
161  # Define a channel list for radiance_group
162  if ''.join(obstype) in radiance_group:
163  chlist = []
164  for bgname in bglist:
165  var = ''.join(bgname.split("/")[1:])
166  chlist = nc['nchans']
167  ObsSpaceInfo = conf.DiagSpaceConfig.get(obstype,conf.nullDiagSpaceInfo)
168  channels = ObsSpaceInfo.get('channels',[vu.miss_i])
169 
170  # Loop over variables with omb suffix
171  nvars = len(bglist)
172  for ivar, depbg in enumerate(bglist):
173  varname = ''.join(depbg.split("/")[1:])
174  obs=obs_var+'/'+''.join(depbg.split("/")[1:])
175  depan=depan_var+'/'+''.join(depbg.split("/")[1:])
176  qcb = qcbg_var+'/'+''.join(depbg.split("/")[1:])
177  qca = qcan_var+'/'+''.join(depbg.split("/")[1:])
178  obserror = err_obs+'/'+''.join(depbg.split("/")[1:])
179  errstart = errstart_var+'/'+''.join(depbg.split("/")[1:])
180  errend = errend_var+'/'+''.join(depbg.split("/")[1:])
181  print("obs=",obs,"depbg=",depbg,"depan=",depan)
182 
183  obsnc = np.asarray([])
184  bkgnc = np.asarray([])
185  ananc = np.asarray([])
186  ombnc = np.asarray([])
187  omanc = np.asarray([])
188  qcbnc = np.asarray([])
189  qcanc = np.asarray([])
190  prenc = np.asarray([])
191  latnc = np.asarray([])
192  lonnc = np.asarray([])
193  recordNum_baknc = np.asarray([])
194  recordNum_ananc = np.asarray([])
195  stationId_baknc = np.asarray([])
196  stationId_ananc = np.asarray([])
197  obserrornc = np.asarray([])
198  errstartnc = np.asarray([])
199  errendnc = np.asarray([])
200  # Build up arrays in loop over exob_group,
201  # excluding category in exob_group[0]
202  for file_name in exob_group[1:]:
203  nc = h5.File(file_name, 'r')
204  if ''.join(obstype)[:6] == 'gnssro':
205  prenc = np.append(prenc, nc['MetaData/altitude'])
206  station_id = nc['MetaData/occulting_sat_id']
207  recordNum = nc['MetaData/record_number']
208  recordNum_baknc = np.append( recordNum_baknc, recordNum)
209  recordNum_ananc = np.append( recordNum_ananc, recordNum)
210  elif ''.join(obstype) not in radiance_group:
211  tmp = nc['MetaData/air_pressure']
212  if np.max(tmp) > 10000.0:
213  tmp = np.divide(tmp,100.0)
214  prenc = np.append( prenc, tmp )
215  station_id = nc['MetaData/station_id']
216  station_id = [ ''.join(i[0:5]) for i in nc['MetaData/station_id'][:]]
217  stationId_baknc = np.append( stationId_baknc, station_id )
218  stationId_ananc = np.append( stationId_ananc, station_id )
219  obsnc = np.append( obsnc, nc[obs] )
220  ombnc = np.append( ombnc, np.negative( nc[depbg] ) ) # omb = (-) depbg
221  omanc = np.append( omanc, np.negative( nc[depan] ) ) # oma = (-) depan
222  qcbnc = np.append( qcbnc, nc[qcb] )
223  qcanc = np.append( qcanc, nc[qca] )
224  obserrornc = np.append(obserrornc, nc[obserror])
225  errstartnc = np.append(errstartnc, nc[errstart])
226  errendnc = np.append(errendnc, nc[errend])
227  latnc = np.append( latnc, nc['MetaData/latitude'] )
228  lonnc = np.append( lonnc, nc['MetaData/longitude'] )
229  bkgnc = obsnc - ombnc
230  ananc = obsnc - omanc
231 
232  #@EffectiveQC, 10: missing; 0: good; 19: rejected by first-guess check
233  #keep data @EffectiveQC=0
234  obsnc[qcbnc != 0] = np.NaN
235  ombnc[np.less(ombnc,-1.0e+15)] = np.NaN
236  ombnc[qcbnc != 0] = np.NaN
237  omanc[np.less(omanc,-1.0e+15)] = np.NaN
238  omanc[qcanc != 0] = np.NaN
239  bkgnc[np.less(bkgnc,-1.0e+15)] = np.NaN
240  bkgnc[qcbnc != 0] = np.NaN
241  ananc[np.less(ananc,-1.0e+15)] = np.NaN
242  ananc[qcanc != 0] = np.NaN
243  obserrornc[qcbnc != 0] = np.NaN
244  errstartnc[qcbnc != 0] = np.NaN
245  errendnc[qcanc != 0] = np.NaN
246  if ''.join(obstype) not in radiance_group:
247  stationId_baknc[qcbnc != 0] = np.NaN
248  stationId_ananc[qcanc != 0] = np.NaN
249  if ''.join(obstype)[:6] == 'gnssro':
250  recordNum_baknc[qcbnc != 0] = np.NaN
251  recordNum_ananc[qcanc != 0] = np.NaN
252  if np.isnan(ombnc).all() == True:
253  print('all values are NaN in', varname, obstype)
254  continue
255 
256  if ''.join(obstype)[:6] == 'gnssro':
257  ombnc = (ombnc/obsnc)*100
258  omanc = (omanc/obsnc)*100
259 
260  if ''.join(obstype) not in radiance_group:
261  if (plot_allinOneDistri):
262  if ''.join(obstype)[:6] == 'gnssro':
263  n_stationId_bak = len(np.unique(stationId_baknc[~np.isnan(stationId_baknc)]))
264  n_stationId_ana = len(np.unique(stationId_ananc[~np.isnan(stationId_ananc)]))
265  n_record_bak = len(np.unique(recordNum_baknc[~np.isnan(recordNum_baknc)]))
266  n_record_ana = len(np.unique(recordNum_ananc[~np.isnan(recordNum_ananc)]))
267  else:
268  if 'nan' in stationId_baknc:
269  n_stationId_bak = len(set(stationId_baknc)) -1
270  else:
271  n_stationId_bak = len(set(stationId_baknc))
272  if 'nan' in stationId_ananc:
273  n_stationId_ana = len(set(stationId_ananc)) -1
274  else:
275  n_stationId_ana = len(set(stationId_ananc))
276 
277  # plot oma, omb from all vertical levels
278  if ''.join(obstype)[:6] == 'gnssro':
279  basic_plot_functions.plotDistri(latnc,lonnc,ombnc,obstype,varname,vardict[varname][0],expt_obs,n_record_bak,"omb_allLevels")
280  basic_plot_functions.plotDistri(latnc,lonnc,omanc,obstype,varname,vardict[varname][0],expt_obs,n_record_ana,"oma_allLevels")
281  else:
282  basic_plot_functions.plotDistri(latnc,lonnc,ombnc,obstype,varname,vardict[varname][0],expt_obs,n_stationId_bak,"omb_allLevels")
283  basic_plot_functions.plotDistri(latnc,lonnc,omanc,obstype,varname,vardict[varname][0],expt_obs,n_stationId_ana,"oma_allLevels")
284 
285  if ''.join(obstype) in profile_group:
286  RMSEombs = []
287  RMSEomas = []
288  obsnums = []
289  ombnums = []
290  omanums = []
291  latncs = []
292  lonncs = []
293  Meanobserrors = []
294  Meanerrstarts = []
295  obserrornums = []
296  errstartnums = []
297  if ''.join(obstype)[:6] == 'gnssro':
298  bins = list(np.arange(50000.0, -1000, -2000.))
299  binsfory= list(np.arange(49500.0,-500.0,-2000.))
300  else:
301  bins = [1050.,950.,850.,750.,650.,550.,450.,350.,250.,150.,50.,0.]
302  binsfory= [1000.,900.,800.,700.,600.,500.,400.,300.,200.,100.,0]
303  bins = np.asarray(bins)
304 
305  ombnum = len(ombnc)-np.isnan(ombnc).sum()
306  ombnums = np.append(ombnums,ombnum)
307 
308  omanum = len(omanc)-np.isnan(omanc).sum()
309  omanums = np.append(omanums,omanum)
310 
311  for j in range(0, len(bins)-1):
312  #print('jban check segmentation fault',j)
313  obsncbin = deepcopy(obsnc)
314  ombncbin = deepcopy(ombnc)
315  omancbin = deepcopy(omanc)
316  latncbin = deepcopy(latnc)
317  lonncbin = deepcopy(lonnc)
318  obserrorbin = deepcopy(obserrornc)
319  errstartbin = deepcopy(errstartnc)
320  errendbin = deepcopy(errendnc)
321  stationbin_bak = deepcopy(stationId_baknc)
322  stationbin_ana = deepcopy(stationId_ananc)
323  recordbin_bak = deepcopy(recordNum_baknc)
324  recordbin_ana = deepcopy(recordNum_ananc)
325 
326  obsncbin[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
327  ombncbin[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
328  omancbin[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
329  latncbin[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
330  lonncbin[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
331  stationbin_bak[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
332  stationbin_ana[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
333  obserrorbin[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
334  errstartbin[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
335  errendbin[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
336  RMSEomb = np.sqrt(np.nanmean(ombncbin**2))
337  RMSEoma = np.sqrt(np.nanmean(omancbin**2))
338  Meanobserror = np.nanmean(obserrorbin)
339  Meanerrstart = np.nanmean(errstartbin)
340 
341  obsnum = len(obsncbin)-np.isnan(obsncbin).sum()
342  obsnums = np.append(obsnums,obsnum)
343 
344  ombnum = len(ombncbin)-np.isnan(ombncbin).sum()
345  ombnums = np.append(ombnums,ombnum)
346 
347  omanum = len(omancbin)-np.isnan(omancbin).sum()
348  omanums = np.append(omanums,omanum)
349 
350  obserrornum = len(obserrorbin)-np.isnan(obserrorbin).sum()
351  obserrornums = np.append(obserrornums,obserrornum)
352 
353  errstartnum = len(errstartbin)-np.isnan(errstartbin).sum()
354  errstartnums = np.append(errstartnums,errstartnum)
355 
356  RMSEombs = np.append(RMSEombs,RMSEomb)
357  RMSEomas = np.append(RMSEomas,RMSEoma)
358  Meanobserrors = np.append(Meanobserrors,Meanobserror)
359  Meanerrstarts = np.append(Meanerrstarts,Meanerrstart)
360  print(obstype)
361  # plot oma, omb from every bin range
362  if (plot_eachLevelDistri):
363  if ''.join(obstype)[:6] == 'gnssro':
364  recordbin_bak[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
365  recordbin_ana[np.logical_or(prenc <bins[j+1], prenc >=bins[j])] = np.NaN
366  n_record_bak = len(np.unique(recordbin_bak[~np.isnan(recordbin_bak)]))
367  n_record_ana = len(np.unique(recordbin_ana[~np.isnan(recordbin_ana)]))
368  n_stationId_bak = len(np.unique(stationbin_bak[~np.isnan(stationbin_bak)]))
369  n_stationId_ana = len(np.unique(stationbin_ana[~np.isnan(stationbin_ana)]))
370  print('check every level n_record_bak, n_record_ana=',n_record_bak, n_record_ana)
371  else:
372  if 'nan' in stationbin_bak:
373  n_stationId_bak = len(set(stationbin_bak)) -1
374  else:
375  n_stationId_bak = len(set(stationbin_bak))
376  if 'nan' in stationbin_ana:
377  n_stationId_ana = len(set(stationbin_ana)) -1
378  else:
379  n_stationId_ana = len(set(stationbin_ana))
380  if ''.join(obstype)[:6] == 'gnssro':
381  basic_plot_functions.plotDistri(latncbin,lonncbin,ombncbin,obstype,varname,vardict[varname][0],expt_obs,n_record_bak,"omb_vertbin"+str(j))
382  basic_plot_functions.plotDistri(latncbin,lonncbin,omancbin,obstype,varname,vardict[varname][0],expt_obs,n_record_ana,"oma_vertbin"+str(j))
383  else:
384  basic_plot_functions.plotDistri(latncbin,lonncbin,ombncbin,obstype,varname,vardict[varname][0],expt_obs,n_stationId_bak,"omb_vertbin"+str(j))
385  basic_plot_functions.plotDistri(latncbin,lonncbin,omancbin,obstype,varname,vardict[varname][0],expt_obs,n_stationId_ana,"oma_vertbin"+str(j))
386 
387  plotrmsepro(RMSEombs,RMSEomas,binsfory,ombnums,omanums,expt_obs,varname,print_fmt)
388  ploterrpro(Meanobserrors,Meanerrstarts,binsfory,obserrornums,errstartnums,expt_obs,varname,print_fmt,"Mean")
389 
390  elif ''.join(obstype) in radiance_group:
391  obsnc = obsnc.reshape(len(latnc),len(chlist))
392  bkgnc = bkgnc.reshape(len(latnc),len(chlist))
393  ananc = ananc.reshape(len(latnc),len(chlist))
394  ombnc = ombnc.reshape(len(latnc),len(chlist))
395  omanc = omanc.reshape(len(latnc),len(chlist))
396  # Generate scatter plots
397  # Maximum number of variables/channels per figure
398  maxsubplts = 16
399  nvars = len(channels)
400  for channel in channels:
401  ifig = channels.index(channel) + 1
402  varval = vardict.get(varname,['',varname])
403  units = vu.varDictObs[var][0]
404  shortname = '_'+str(channel)
405  shortname = varval[1] + shortname
406  ivar = channels.index(channel)
407  if ivar == 0:
408  # scatter_verification yields 2 figure types
409  nfigtypes = 2
410  nx_subplt, ny_subplt, figs, subplt_cnt = \
411  init_subplts(channels, nfigtypes, maxsubplts)
412 
413  subplt_cnt = \
414  scatter_verification(ifig, shortname, units, ivar, nvars, \
415  maxsubplts, subplt_cnt, \
416  obsnc[:,channel-1], ombnc[:,channel-1], omanc[:,channel-1], \
417  nx_subplt, ny_subplt, \
418  nfigtypes, figs, expt_obs,print_fmt)
419 
420  # Horizontal distribution of radiance OBS, BCKG, ANA, OMB, OMA
421  varval = vardict.get(varname,['',varname])
422  units = vu.varDictObs[var][0]
423  dotsize = 5.0
424  if ''.join(obstype) in radiance_group:
425  color = "BT"
426  else:
427  color = "gist_ncar"
428  for channel in channels:
429  shortname = '_'+str(channel)
430  shortname = varval[1] + shortname
431  basic_plot_functions.plotDistri(latnc,lonnc,obsnc[:,channel-1], \
432  obstype,shortname,units,expt_obs,0,"obs", \
433  None,None,dotsize,color)
434  basic_plot_functions.plotDistri(latnc,lonnc,bkgnc[:,channel-1], \
435  obstype,shortname,units,expt_obs,0,"bkg", \
436  None,None,dotsize,color)
437  basic_plot_functions.plotDistri(latnc,lonnc,ananc[:,channel-1], \
438  obstype,shortname,units,expt_obs,0,"ana", \
439  None,None,dotsize,color)
440  dmin = -30
441  dmax = 30
442  color = "hsv"
443  basic_plot_functions.plotDistri(latnc,lonnc,ombnc[:,channel-1], \
444  obstype,shortname,units,expt_obs,0,"omb", \
445  dmin,dmax,dotsize,color)
446  basic_plot_functions.plotDistri(latnc,lonnc,omanc[:,channel-1], \
447  obstype,shortname,units,expt_obs,0,"oma", \
448  dmin,dmax,dotsize,color)
449 
450 def plotrmsepro(var1,var2,binsfory,ombnums,omanums,EXP_NAME,VAR_NAME,fmt):
451  fig, ax1 = plt.subplots()
452 # reverse left y-axis
453  plt.gca().invert_yaxis()
454  plt.grid(True)
455  ax1.plot(var1,binsfory,'g-*',markersize=5)
456  ax1.plot(var2,binsfory,'r-*',markersize=5)
457  print(var1)
458  print(np.nanmax(var1))
459  if VAR_NAME in 'specific_humidity':
460  ax1.set_xlim([0,np.nanmax(var1)])
461  else:
462  ax1.set_xlim([0,math.ceil(np.nanmax(var1))])
463 
464  ax2 = ax1.twinx()
465  ax2.spines['right'].set_position(('axes', 1.0))
466  ax2.set_yticks(binsfory)
467  ax2.set_ylabel('Observation Number(EffectiveQCbg=0)',fontsize=15)
468 
469  ax3 = ax1.twinx()
470  ax3.set_yticks(binsfory)
471  ax3.spines['right'].set_position(('axes', 1.2))
472  ax3.set_ylabel('Observation Number(EffectiveQCan=0)',fontsize=15)
473 
474  if ''.join(EXP_NAME.split("_")[-1:])[:6] == 'gnssro':
475  ax1.set_ylim([0,49500])
476  ax1.set_ylabel('Altitude (m)',fontsize=15)
477  ax1.set_xlabel(VAR_NAME+' RMSE of OMB/O & OMA/O '+ vardict[VAR_NAME][0],fontsize=15)
478  ax1.legend(('(OMB/O)*100%','(OMA/O)*100%'), loc='upper right',fontsize=15)
479  ax2.set_yticklabels(ombnums.astype(np.int))
480  ax3.set_yticklabels(omanums.astype(np.int))
481  else:
482  ax1.set_ylim([1000,0])
483  major_ticks = np.arange(0, 1000, 100)
484  ax1.set_yticks(major_ticks)
485  ax1.set_ylabel('Pressure (hPa)',fontsize=15)
486  ax1.set_xlabel(VAR_NAME+' RMSE '+ vardict[VAR_NAME][0],fontsize=15)
487  ax1.legend(('OMB','OMA'), loc='lower left',fontsize=15)
488  ax2.set_yticklabels(reversed(ombnums.astype(np.int)))
489  ax3.set_yticklabels(reversed(omanums.astype(np.int)))
490  fname = 'RMSE_%s_%s.'%(EXP_NAME,VAR_NAME)+fmt
491  print('Saving figure to '+fname)
492  plt.savefig(fname,dpi=200,bbox_inches='tight')
493  plt.close()
494 
495 def ploterrpro(var1,var2,binsfory,ombnums,omanums,EXP_NAME,VAR_NAME,fmt,metrics):
496  fig, ax1 = plt.subplots()
497 # reverse left y-axis
498  plt.gca().invert_yaxis()
499  plt.grid(True)
500  ax1.plot(var1,binsfory,'g-*',markersize=5)
501  ax1.plot(var2,binsfory,'r-*',markersize=5)
502  print(np.nanmax(var1))
503  if VAR_NAME in 'specific_humidity':
504  ax1.set_xlim([0,np.nanmax(var1)])
505  else:
506  ax1.set_xlim([0,math.ceil(np.nanmax(var2))])
507 
508  ax2 = ax1.twinx()
509  ax2.spines['right'].set_position(('axes', 1.0))
510  ax2.set_yticks(binsfory)
511  #ax2.set_ylabel('Obs Num for obserror(PreQC>-10 and <3)',fontsize=8)
512  ax2.set_ylabel('Obs Num for obserror (EffectiveQCbg=0)',fontsize=8)
513 
514  ax3 = ax1.twinx()
515  ax3.set_yticks(binsfory)
516  ax3.spines['right'].set_position(('axes', 1.2))
517  ax3.set_ylabel('Obs Num for EffectiveError0(EffectiveQCbg=0)',fontsize=8)
518 
519  if ''.join(EXP_NAME.split("_")[-1:])[:6] == 'gnssro':
520  ax1.set_ylim([0,49500])
521  ax1.set_ylabel('Altitude (m)',fontsize=15)
522  #ax1.set_xlabel(VAR_NAME+' RMSE of OMB/O & OMA/O '+ vardict[VAR_NAME][0],fontsize=15)
523  #ax1.legend(('(OMB/O)*100%','(OMA/O)*100%'), loc='upper right',fontsize=15)
524  ax2.set_yticklabels(ombnums.astype(np.int))
525  ax3.set_yticklabels(omanums.astype(np.int))
526  else:
527  ax1.set_ylim([1000,0])
528  major_ticks = np.arange(0, 1000, 100)
529  ax1.set_yticks(major_ticks)
530  ax1.set_ylabel('Pressure (hPa)',fontsize=15)
531  #ax1.set_xlabel(VAR_NAME+' '+ metrics +' '+ vardict[VAR_NAME][0],fontsize=15)
532  #ax1.legend(('obserr','EffectiveError0'), loc='lower left',fontsize=15)
533  ax2.set_yticklabels(reversed(ombnums.astype(np.int)))
534  ax3.set_yticklabels(reversed(omanums.astype(np.int)))
535  ax1.set_xlabel(VAR_NAME+' '+ metrics +' '+ vardict[VAR_NAME][0],fontsize=15)
536  ax1.legend(('obserr','EffectiveError0'), loc='lower left',fontsize=15)
537 
538  fname = metrics+'_%s_%s.'%(EXP_NAME,VAR_NAME)+fmt
539  #fname = 'RMSE_%s_%s.'%(EXP_NAME,VAR_NAME)+fmt
540  print('Saving figure to '+fname)
541  plt.savefig(fname,dpi=200,bbox_inches='tight')
542  plt.close()
543 
544 def init_subplts(subpltlist, nfigtypes, maxsubplts):
545 #================================================================
546 #INPUTS:
547 # subpltlist - a list object defining all subplots required
548 # nfigtypes - the number of figure types for each subpltlist member
549 # maxsubplts - maximum number of subplot objects in a figure type
550 #
551 #OUTPUTS: (all to be used externally)
552 # figs - list of matplotlib.pyplot figure objects (figs)
553 # nx_subplt, - maximum dim. of subplots in all figs members
554 # ny_subplt
555 # subplt_cnt - counter of subplots in each figure object
556 #
557 #PURPOSE: Initialize multiple figure objects and descriptors
558 #================================================================
559  nnfigs = (int(len(subpltlist) / maxsubplts) + 1)
560  nsubplts = len(subpltlist)
561  if nsubplts > maxsubplts : nsubplts = maxsubplts
562 
563  ny_subplt = []
564  nx_subplt = []
565 
566  nx = np.ceil(np.sqrt(nsubplts))
567  ny = np.ceil(np.true_divide(nsubplts,nx))
568  nx_subplt.append(nx)
569  ny_subplt.append(ny)
570  figs = []
571  for ifig in range(0,nnfigs*nfigtypes):
572  fig = plt.figure()
573  inch_size = 1.9
574  fig.set_size_inches(nx_subplt[0]*inch_size,ny_subplt[0]*inch_size)
575  figs.append(fig)
576  subplt_cnt = np.zeros(nnfigs*nfigtypes)
577 
578  return nx_subplt, ny_subplt, figs, subplt_cnt
579 
580 def scatter_verification(ifig, varname, varunits, ivar, nvars, \
581  maxsubplts, subplt_cnt, \
582  obs, omb, oma, \
583  nx_subplt, ny_subplt, \
584  nfigtypes, figs, EXP_NAME, fmt):
585 #================================================================
586 #INPUTS:
587 # ifig - subplot number
588 # varname - variable name
589 # varunits - variable units
590 # ivar - variable number
591 # nvars - total number of variables
592 # maxsubplts - maximum number of subplots per figure
593 # subplt_cnt - counter of subplots in all figs members
594 # obs - single list of Observation
595 # omb - single list of Observation minus background
596 # oma - single list of Observation minus analysis
597 # nx_subplt - subplot x-dimension of each figs member
598 # ny_subplt - subplot y-dimension of each figs member
599 # nfigtypes - number of figure types associated with figs list
600 # figs - list of matplotlib.pyplot figure objects
601 # EXP_NAME - experiment name
602 #
603 #OUTPUT: subplt_cnt - updated counter
604 #
605 #PURPOSE: Generate verification subplots for varname amongst
606 # subplots containing multiple variables
607 #================================================================
608 
609  nnfigs = len(figs) / nfigtypes
610  jfig = int((ifig-1)/maxsubplts)
611  kfig = np.mod(ifig-1,maxsubplts)+1
612  subplt_cnt[jfig] += 1
613  if jfig == nnfigs-1 :
614  numsubplts = np.mod(nvars,maxsubplts)
615  else :
616  numsubplts = maxsubplts
617  offset = 0
618 
619  for iifig in range(nfigtypes):
620  if iifig == 0:
621  xlab = 'y'
622  ylab = 'h(x)'
623  elif iifig == 1:
624  xlab = 'h(xb) - y'
625  ylab = 'h(xa) - y'
626  else:
627  print('WARNING: scatter_verification has no definitions for nfigtypes == ',nfigtypes)
628  continue
629 
630  # Uncomment these 2 lines to put x/y labels only on peripheral subplts
631  #if kfig <= min(nvars,numsubplts) - nx_subplt[0] : xlab = ''
632  #if np.mod(kfig,nx_subplt[0]) != 1 : ylab = ''
633  ax = figs[int(offset+jfig)].add_subplot(ny_subplt[0],nx_subplt[0],kfig)
634 
635  if iifig == 0:
636  #Add scatter plot for h(x) vs. y
637  fname = 'XB_XA_%s'%(EXP_NAME)
638  stat = scatter_one2ones( \
639  obs, [obs-omb , obs-oma], \
640  ['x_b' , 'x_a'], True, xlab, ylab, \
641  varname, varunits, ax)
642  if iifig == 1:
643  #Add scatter plot for OMA vs. OMB
644  fname = 'OMB_OMA_%s'%(EXP_NAME)
645  stat = scatter_one2ones( \
646  -omb , [-oma], \
647  [], False, xlab, ylab, \
648  varname, varunits, ax)
649 
650  if stat != 0:
651  ax.set_xticks([])
652  ax.set_yticks([])
653  ax.text(0.5, 0.5, '[NO DATA]',
654  {'color': 'k', 'fontsize': 12},
655  ha='center', va='center', transform=ax.transAxes)
656 
657  if nnfigs > 1: fname=fname+'_%d-of-%d'%(jfig,nnfigs)
658  fname=fname+'.'+fmt
659 
660  if (ivar == nvars-1 or subplt_cnt[jfig] == numsubplts):
661  #Save the figure to file
662  print('Saving figure to '+fname)
663  figs[int(offset+jfig)].subplots_adjust(wspace=0.35,hspace=0.35)
664  figs[int(offset+jfig)].savefig(fname,dpi=200,bbox_inches='tight')
665 
666  offset += nnfigs
667 
668  return subplt_cnt
669 
670 def scatter_one2ones(XVAL,YVALS,LEG,show_stats,XLAB,YLAB,VAR_NAME,UNITS,ax):
671 #================================================================
672 #INPUTS:
673 # XVAL - single list of x-coordinates
674 # YVALS - list of lists of y-coordinates
675 # LEG - list of legend entries
676 # show_stats - boolean, show slope and RMSE for each line
677 # XLAB - xlabel string
678 # YLAB - ylabel string
679 # VAR_NAME - variable name for text label
680 # UNITS - variable units
681 # ax - matplotlib.pyplot axes object
682 #
683 #OUTPUTS: none, modifies ax object to include one-to-one plots
684 #
685 #PURPOSE: Create a one-to-one scatter plot on ax using XVAL and
686 # YVALS, including:
687 # + unique markers for each list contained in YVALS
688 # + linear regressions for each list contained in YVALS
689 # + a one-to-one line
690 #================================================================
691  fsize_leg = 6.0
692  fsize_lab = 4.5
693 
694  ax.text(0.03, 0.97 - len(LEG) * 0.125, VAR_NAME,
695  {'color': 'k', 'fontsize': fsize_leg},
696  ha='left', va='top', transform=ax.transAxes)
697 
698  if len(XVAL) == 0:
699  print('WARNING in scatter_one2ones: len(XVAL)==0; skipping this dataset')
700  return 1
701  NVALS = np.asarray([])
702  for i,YVAL in enumerate(YVALS):
703  if len(XVAL) != len(YVAL):
704  print('ERROR: Incorrect usage of scatter_one2ones, YVALS must be list of arrays.')
705  os._exit()
706  not_nan = np.isfinite(XVAL) & np.isfinite(YVAL)
707  NVALS = np.append(NVALS,np.sum(not_nan))
708 
709  if np.all(NVALS == 0):
710  print('WARNING in scatter_one2ones: all(XVAL/YVAL) are non-finite; skipping this dataset')
711  return 1
712 
713  colors = [ \
714  [0.0000, 0.4470, 0.7410], \
715  [0.8500, 0.3250, 0.0980], \
716  [0.9290, 0.6940, 0.1250], \
717  [0.4940, 0.1840, 0.5560], \
718  [0.4660, 0.6740, 0.1880], \
719  [0.3010, 0.7450, 0.9330], \
720  [0.6350, 0.0780, 0.1840], \
721  ]
722  markers = ['*','+','o','.']
723  msizes = [0.5,0.5,0.5, 3 ]
724 
725  for i,YVAL in enumerate(YVALS):
726  col = colors[np.mod(i,len(colors))]
727  mind = np.mod(i,len(markers))
728  ax.plot( XVAL, YVAL, markers[mind], color = col, \
729  markersize = msizes[mind], alpha=0.5 )
730 
731  if XLAB != '':
732  label = XLAB
733  if UNITS != '': label = label+' '+UNITS
734  ax.set_xlabel(label,fontsize=6)
735  if YLAB != '':
736  label = YLAB
737  if UNITS != '': label = label+' '+UNITS
738  ax.set_ylabel(label,fontsize=6)
739  if len(LEG) > 0:
740  ax.legend(LEG, loc='upper left',fontsize=5)
741 
742  ymin, ymax = ax.get_ylim()
743  xmin, xmax = ax.get_xlim()
744  xymin=min(xmin,ymin)
745  xymax=max(xmax,ymax)
746 
747  #Could adjust limits/ticks for better aesthetics
748  #round_nmbr = 5
749  #xymin=np.floor(min(xmin,ymin) / round_nmbr) * round_nmbr
750  #xymax=np.ceil(max(xmax,ymax) / round_nmbr) * round_nmbr
751 
752  # Add linear regression and statistics
753  predictor = np.arange(xymin, xymax, (xymax - xymin) / 10.0)
754  tx = 0.98
755  ty = 0.02
756  nline = ''
757  for j,YVAL in enumerate(reversed(YVALS)):
758  i = len(YVALS) - j - 1
759  if NVALS[j]==0: continue
760  del not_nan
761  not_nan = np.isfinite(XVAL) & np.isfinite(YVAL)
762 
763  # Add linear fit to YVAL vs. XVAL
764  p = np.polyfit(XVAL[not_nan],YVAL[not_nan],1)
765  predicted = p[0] * predictor + p[1]
766  col0 = colors[np.mod(i,len(colors))]
767 # bright = 0.5
768 # col = bright * np.asarray([1.,1.,1.]) + (1. - bright) * np.asarray(col0)
769  dimmer = 0.35
770  col = (1. - dimmer) * np.asarray(col0)
771  ax.plot( predictor, predicted, '-', color = col, lw=1.2 )
772 
773  # Add statistics for YVAL vs. XVAL
774  stat = 'N = %d\nslope: %0.2f '%(NVALS[j],p[0])
775  if show_stats:
776  RMSE = np.sqrt( np.sum( np.square(YVAL[not_nan] - XVAL[not_nan]) ) / NVALS[j] )
777  BIAS = np.sum( YVAL[not_nan] - XVAL[not_nan] ) / NVALS[j]
778  stat = stat+'\nRMSE: %0.2f \nBIAS: %0.2f'%(RMSE,BIAS)
779  ax.text(tx, ty, stat+nline, \
780  {'color': col, 'fontsize': fsize_lab},
781  ha='right', va='bottom', backgroundcolor=[1,1,1,0.2], \
782  clip_on=True, transform=ax.transAxes)
783  nline = nline + ''.join('\n' * stat.count('\n')) + '\n'
784 
785  ax.plot([xymin,xymax],[xymin,xymax],'k--',lw=0.5)
786  ticks = ax.get_yticks()
787  ticks = ticks[np.logical_and(ticks >= xymin, ticks<=xymax)]
788  ax.set_xticks(ticks)
789  ax.set_yticks(ticks)
790  for tick in ax.xaxis.get_major_ticks():
791  tick.label.set_fontsize(5)
792  tick.label.set_rotation('vertical')
793  for tick in ax.yaxis.get_major_ticks():
794  tick.label.set_fontsize(5)
795 
796  ax.set_xlim(xymin,xymax)
797  ax.set_ylim(xymin,xymax)
798  ax.grid()
799  return 0
800 
801 def main():
802  readdata()
803 
804 if __name__ == '__main__': main()
def plotDistri(lats, lons, values, ObsType, VarName, var_unit, out_name, nstation, levbin, dmin=None, dmax=None, dotsize=6, color="rainbow")
def scatter_verification(ifig, varname, varunits, ivar, nvars, maxsubplts, subplt_cnt, obs, omb, oma, nx_subplt, ny_subplt, nfigtypes, figs, EXP_NAME, fmt)
def scatter_one2ones(XVAL, YVALS, LEG, show_stats, XLAB, YLAB, VAR_NAME, UNITS, ax)
def plotrmsepro(var1, var2, binsfory, ombnums, omanums, EXP_NAME, VAR_NAME, fmt)
def init_subplts(subpltlist, nfigtypes, maxsubplts)
def ploterrpro(var1, var2, binsfory, ombnums, omanums, EXP_NAME, VAR_NAME, fmt, metrics)