5 from pandas.plotting
import register_matplotlib_converters
6 register_matplotlib_converters()
9 import matplotlib.axes
as maxes
10 import matplotlib.cm
as cm
11 import matplotlib.colors
as colors
12 from matplotlib.colors
import BoundaryNorm
13 import matplotlib.pyplot
as plt
14 from matplotlib.ticker
import MaxNLocator
15 from mpl_toolkits.basemap
import Basemap
16 from mpl_toolkits.axes_grid1
import make_axes_locatable
18 import plot_utils
as pu
19 import var_utils
as vu
22 _logger = logging.getLogger(__name__)
24 cmGray = plt.cm.get_cmap(
"gist_gray")
25 cmRainbow = plt.cm.get_cmap(
"gist_rainbow")
26 cmSpectral = plt.cm.get_cmap(
"nipy_spectral")
27 cmHeat = plt.cm.get_cmap(
"gist_heat")
28 cmOcean = plt.cm.get_cmap(
"ocean")
29 cmNCAR = plt.cm.get_cmap(
"gist_ncar")
31 WhiteBlack1 =
cmGray(np.linspace(1.0,0.0,17))
32 BlackRed =
cmHeat(np.linspace(0.0,0.5,10))
36 GreenBlueCyan =
cmNCAR(np.linspace(0.05,0.2,20))
38 MVW =
cmNCAR(np.linspace(0.8,0.98,21))
39 WhiteBlack2 =
cmGray(np.linspace(0.9,0.0,31))
43 btcolors = np.concatenate((WhiteBlack1, BlackRed, ROYG, GreenBlueCyan, MVW, WhiteBlack2))
45 btCMap = colors.ListedColormap(btcolors)
52 distriZooms[
'default'] = {
59 distriZooms[
'abi'] = {
66 distriZooms[
'ahi'] = {
75 ObsType,VarName,var_unit,out_name,nstation,levbin, \
76 dmin=None,dmax=None,dotsize=6,color="rainbow"):
97 cLon = distriZooms[
'default'][
'cLon']
98 minLon = distriZooms[
'default'][
'minLon']
99 maxLon = distriZooms[
'default'][
'maxLon']
100 minLat = distriZooms[
'default'][
'minLat']
101 maxLat = distriZooms[
'default'][
'maxLat']
103 for key, val
in distriZooms.items():
106 minLon = val[
'minLon']
107 maxLon = val[
'maxLon']
108 minLat = val[
'minLat']
109 maxLat = val[
'maxLat']
111 parallels=np.arange(-90,90,30)
114 fig,ax=plt.subplots(figsize=(5,5))
115 m=Basemap(projection=
'nsper',
120 m.drawparallels(parallels, linewidth=0.2, dashes=[1,3])
121 meridians=np.arange(-180,180,30)
122 m.drawmeridians(meridians, linewidth=0.2, dashes=[1,3])
124 fig,ax=plt.subplots(figsize=(8,8))
125 m=Basemap(projection=
'cyl',
126 llcrnrlon=minLon, llcrnrlat=minLat,
127 urcrnrlon=maxLon, urcrnrlat=maxLat,
130 m.drawparallels(parallels, linewidth=0.2, dashes=[1,3],
131 labels=[
True,
True,
True,
True])
132 meridians=np.arange(-180,180,60)
133 m.drawmeridians(meridians, linewidth=0.2, dashes=[1,3],
134 labels=[
True,
True,
True,
True])
136 m.drawcoastlines(linewidth=0.2,zorder=10)
143 plt.text(0.5, 1.25,
'%s %s %s nlocs:%s' \
144 %(ObsType,VarName,var_unit,len(values[~np.isnan(values)])), \
145 horizontalalignment=
'center', \
146 fontsize=12, transform = ax.transAxes)
148 if ObsType[:6] ==
'gnssro':
149 plt.text(0.5, 1.25,
'%s %s %s nlocs:%s nprofile:%s' \
150 %(ObsType,VarName,var_unit,len(values[~np.isnan(values)]),nstation), \
151 horizontalalignment=
'center', \
152 fontsize=12, transform = ax.transAxes)
153 elif ObsType ==
'aircraft':
154 plt.text(0.5, 1.25,
'%s %s %s nlocs:%s nflight:%s' \
155 %(ObsType,VarName,var_unit,len(values[~np.isnan(values)]),nstation), \
156 horizontalalignment=
'center', \
157 fontsize=12, transform = ax.transAxes)
159 plt.text(0.5, 1.25,
'%s %s %s nlocs:%s nstation:%s' \
160 %(ObsType,VarName,var_unit,len(values[~np.isnan(values)]),nstation), \
161 horizontalalignment=
'center', \
162 fontsize=12, transform = ax.transAxes)
166 if (
"abi" in ObsType
or "ahi" in ObsType):
168 if dmin
is None: dmin = 183
169 if dmax
is None: dmax = 303
171 cm = plt.cm.get_cmap(
"gist_ncar")
172 if dmin
is None: dmin = 190
173 if dmax
is None: dmax = 270
175 cm = plt.cm.get_cmap(color)
177 finite = np.isfinite(values)
178 if (((
"abi" in ObsType
or "ahi" in ObsType)
179 and finite.sum() > 4e4)
180 or "model" in ObsType):
188 lonsPlot = lons[finite]
189 lonsPlot[lonsPlot > 180.0] -= 360.0
190 latsPlot = lats[finite]
191 valuesPlot = values[finite]
192 lonSort = np.argsort(lonsPlot)
194 sc = m.pcolor(lonsPlot[lonSort], latsPlot[lonSort], valuesPlot[lonSort],
195 cmap = cm, vmin = dmin, vmax = dmax,
196 latlon =
True, tri =
True)
199 sc = m.scatter(lons[finite], lats[finite], c=values[finite],
201 s = dotsize, cmap = cm, vmin = dmin, vmax = dmax,
202 marker =
'.', linewidth = 0,
207 divider = make_axes_locatable(ax)
208 cax = divider.append_axes(
"top",
211 plt.colorbar(sc,cax=cax,ax=ax,orientation=
'horizontal')
212 cax.xaxis.set_ticks_position(
'top')
214 plt.savefig(
'distri_%s_%s_%s.png'%(VarName,out_name,levbin),dpi=200,bbox_inches=
'tight')
221 minLon = -180., maxLon = 180.,
222 minLat = -90., maxLat = 90.,
224 projection = 'default',
225 dmin = None, dmax = None,
236 fig,ax=plt.subplots(figsize=(5,5))
237 if projection ==
'default':
241 m=Basemap(projection=proj,
246 parallels=np.arange(-90, 90, 30)
247 m.drawparallels(parallels, linewidth=0.2, dashes=[1,3], zorder = 3)
248 meridians=np.arange(-180, 180, 30)
249 m.drawmeridians(meridians, linewidth=0.2, dashes=[1,3], zorder = 3)
251 fig,ax=plt.subplots(figsize=(8,8))
252 if projection ==
'default':
256 m=Basemap(projection=proj,
257 llcrnrlon=minLon, llcrnrlat=minLat,
258 urcrnrlon=maxLon, urcrnrlat=maxLat,
261 parallels = np.arange(minLat, maxLat, (maxLat - minLat) / 6.)
262 m.drawparallels(parallels, linewidth=0.2, dashes=[1,3],
263 labels=[
True,
True,
True,
True], zorder = 3)
264 meridians = np.arange(minLon, maxLon, (maxLon - minLon) / 6.)
265 m.drawmeridians(meridians, linewidth=0.2, dashes=[1,3],
266 labels=[
True,
True,
True,
True], zorder = 3)
268 m.drawcoastlines(linewidth=0.2, zorder=2)
276 assert (cbarType
is None or cbarType
in [
'Log',
'SymLog']), \
277 'scatterMapFields: invalid cbarType: '+cbarType
279 for name, field
in fields.items():
280 finite = np.isfinite(field)
282 vmin = field[finite].min()
286 vmax = field[finite].max()
291 sc = m.scatter(lons[name][finite], lats[name][finite], c=c.get(name, field[finite]),
293 s = sizes.get(name, 1),
294 cmap = cmap, vmin = vmin, vmax = vmax,
295 marker = markers.get(name,
'.'), linewidth = 0,
298 elif cbarType ==
'Log':
299 if vmin <= logVLim: vmin = logVLim
300 field_ = field[finite]
301 field_[field_ < vmin] = vmin
302 sc = m.scatter(lons[name][finite], lats[name][finite], c=c.get(name, field_),
304 s = sizes.get(name, 1),
306 marker = markers.get(name,
'.'), linewidth = 0,
307 norm=colors.LogNorm(vmin=vmin, vmax=vmax),
310 elif cbarType ==
'SymLog':
311 sc = m.scatter(lons[name][finite], lats[name][finite], c=c.get(name, field[finite]),
313 s = sizes.get(name, 1),
315 marker = markers.get(name,
'.'), linewidth = 0,
316 norm=colors.SymLogNorm(vmin=vmin, vmax=vmax,
317 linthresh=1.e-4*vmax, linscale=1.0, base=10),
321 divider = make_axes_locatable(ax)
322 cax = divider.append_axes(
"top",
325 plt.colorbar(sc, cax=cax, ax=ax, orientation=
'horizontal')
326 cax.xaxis.set_ticks_position(
'top')
328 plt.savefig(filename, dpi=200, bbox_inches=
'tight')
339 zgrid = np.loadtxt(
"/glade/work/jban/pandac/fix_input/graphics/zgrid_v55.txt")
341 fig, ax1 = plt.subplots()
343 xarray = range(len(xlabeltime))
344 valuemin = np.amin(Stats)
345 valuemax = np.amax(Stats)
349 if (valuemin > 0
or valuemax < 0):
351 plt.contourf(xarray,ylevels,Stats,40,vmin=valuemin, vmax=valuemax,cmap=color)
355 if ( -valuemin < epsilon
and valuemax < epsilon ):
359 elif ( -valuemin < epsilon
and valuemax > epsilon ):
362 elif ( -valuemin > epsilon
and valuemax < epsilon ):
368 norm = matplotlib.colors.DivergingNorm(vmin=valuemin, vcenter=0, vmax=valuemax)
369 plt.contourf(xarray,ylevels,Stats,40,vmin=valuemin, vmax=valuemax,norm=norm,cmap=cmap)
370 xarray = range(len(xlabeltime))
371 major_ticks = np.arange(0, 56, 5)
372 ax1.set_yticks(major_ticks)
374 ax1.set_ylabel(
'Vertical level',fontsize=15)
377 ax2.set_yticks(major_ticks-1)
378 ax2.set_yticklabels((zgrid[::5]).astype(int))
380 ax2.set_ylabel(
'Height (m)',fontsize=13)
382 FCDay =
''.join(VarName.split(
"_")[1:][:-3])
383 if (FCDay ==
'day0.0'):
384 ax1.set_xlabel(
'Analysis Time',fontsize=15)
385 ax1.set_xticks(xarray[::4])
386 ax1.set_xticklabels(xlabeltime[::4],rotation=90)
387 elif (FCDay ==
'day0.25'):
388 ax1.set_xlabel(
'6h Forecast',fontsize=15)
389 ax1.set_xticks(xarray[::4])
390 ax1.set_xticklabels(xlabeltime[::4],rotation=90)
392 ax1.set_xlabel(
'Lead Time',fontsize=15)
394 plt.colorbar(extend=
'both',orientation=
"horizontal",pad=0.2)
396 region =
''.join(VarName.split(
"_")[2:][:-2])
397 var =
''.join(VarName.split(
"_")[3:][:-1])
398 stats =
''.join(VarName.split(
"_")[4:])
399 plt.title(stats+
' variable:'+vu.varDictModel[var][1]+
'('+ vu.varDictModel[var][0]+
') '+region, fontsize = 12)
400 plt.savefig(VarName+
'_TS_2d.png',dpi=200,bbox_inches=
'tight')
403 maxLegendEntries = 12
411 title="", dataLabel="y", \
412 sciticks=False, logscale= False, signdef=False, \
413 indepLabel="x", invert_ind_axis=False, \
414 ny=1, nx=1, nplots=1, iplot=0, \
415 linesValsMinCI=None, linesValsMaxCI=None, \
416 dmin=np.NaN, dmax=np.NaN, \
417 lineAttribOffset=0, \
419 interiorLabels=True):
447 ax = fig.add_subplot(ny, nx, iplot+1)
450 ax.set_title(title,fontsize=5)
453 plotVals = np.asarray([])
455 for iline, lineVals
in enumerate(linesVals):
456 if np.all(np.isnan(lineVals)):
459 _logger.warning(
"skipping all-NaN data")
460 _logger.warning(title+
"; "+indepLabel+
"; "+linesLabel[iline])
461 nanWarnSer=nanWarnSer+1
463 if len(lineVals)!=len(xVals):
466 _logger.warning(
"skipping data where len(x)!=len(y)")
467 _logger.warning(title+
"; "+indepLabel+
"; "+linesLabel[iline])
468 lenWarnSer=lenWarnSer+1
472 pColor = pu.plotColor(len(linesVals),iline+lineAttribOffset)
474 ax.plot(xVals, lineVals, \
476 label=linesLabel[iline], \
477 ls=pu.plotLineStyle(len(linesVals),iline+lineAttribOffset), \
480 plotVals = np.append(plotVals, lineVals)
483 if linesValsMinCI
is not None and \
484 linesValsMaxCI
is not None:
488 significant = np.empty(len(lineVals))
489 significant[:] = np.NaN
491 significant = np.multiply(linesValsMinCI[iline], linesValsMaxCI[iline])
492 significant = np.array([x
if np.isfinite(x)
else -1.0
for x
in significant])
494 lineArr = np.array(lineVals)
495 xArr = np.array(xVals)
496 negsiginds = np.array([i
for i,x
in enumerate(significant)
497 if (x > 0.0
and lineArr[i] < 0.0)],dtype=int)
498 if len(negsiginds) > 0:
499 ax.plot(xArr[negsiginds], lineArr[negsiginds], \
505 possiginds = np.array([i
for i,x
in enumerate(significant)
506 if (x > 0.0
and lineArr[i] > 0.0)],dtype=int)
507 if len(possiginds) > 0:
508 ax.plot(xArr[possiginds], lineArr[possiginds], \
514 ax.plot(xVals, linesValsMinCI[iline], \
519 ax.plot(xVals, linesValsMaxCI[iline], \
524 ax.fill_between(xVals, linesValsMinCI[iline], linesValsMaxCI[iline], \
527 linewidth=0.0, alpha = 0.1)
528 ax.fill_between(xVals, linesValsMinCI[iline], linesValsMaxCI[iline], \
529 where=significant > 0.0, \
532 linewidth=0.2, alpha = 0.3)
535 ax.tick_params(axis=
'x',labelbottom=
False)
536 ax.tick_params(axis=
'y',labelleft=
False)
541 ax.plot([xVals[0], xVals[-1]], [0., 0.], ls=
"--", c=
".3", \
542 linewidth=0.7,markersize=0)
545 mindval, maxdval = pu.get_clean_ax_limits(dmin,dmax,plotVals,signdef)
548 ax.xaxis.set_tick_params(labelsize=3)
549 ax.yaxis.set_tick_params(labelsize=3)
551 isLogScale = logscale
553 nonzero = np.logical_and(np.greater(np.abs(plotVals), 0.), np.isfinite(plotVals))
554 if nonzero.sum() > 0:
555 vmin = np.nanmin(np.abs(plotVals[nonzero]))
556 vmax = np.nanmax(np.abs(plotVals[nonzero]))
559 if vmax / vmin > 10.0:
564 ax.set_yscale(
'symlog')
568 if isLogScale
and np.isfinite(maxdval)
and maxdval > 0.:
569 ax.set_ylim(
None, maxdval)
570 if np.abs(vmin) > 0.:
571 ax.set_ylim(vmin,
None)
575 ax.ticklabel_format(style=
'sci', axis=
'y', scilimits=(0,0))
576 if (np.isfinite(mindval)
and
577 np.isfinite(maxdval)):
578 ax.set_ylim(mindval,maxdval)
579 if maxdval-mindval < 1.0
or \
580 maxdval-mindval > 100.0:
581 ax.tick_params(axis=
'y',rotation=-35)
582 ax.yaxis.get_offset_text().set_fontsize(3)
585 ix = int(iplot)%int(nx)
586 iy = int(iplot)/int(nx)
587 if not interiorLabels \
588 and (iy < ny-2
or ( iy == ny-2
and (int(nplots)%int(nx)==0
or ix <= (int(nplots)%int(nx) - 1)) )):
589 ax.tick_params(axis=
'x',labelbottom=
False)
590 if interiorLabels
or ix == 0:
591 ax.set_xlabel(indepLabel,fontsize=4)
592 if interiorLabels
or iy == ny-1:
593 ax.set_ylabel(dataLabel,fontsize=4)
596 if nLines <= maxLegendEntries:
599 lh = ax.legend(loc=
'best',fontsize=3,frameon=
True,\
600 framealpha=0.4,ncol=1)
601 lh.get_frame().set_linewidth(0.0)
602 elif ix==nx-1
or iplot==nplots-1:
604 ax.legend(loc=
'upper left',fontsize=3,frameon=
False, \
605 bbox_to_anchor=(1.02, 1), borderaxespad=0)
620 title="", dataLabel="x", \
621 sciticks=False, logscale=False, signdef=False, \
622 indepLabel="y", invert_ind_axis=False, \
623 ny=1, nx=1, nplots=1, iplot=0, \
624 linesValsMinCI=None, linesValsMaxCI=None, \
625 dmin=np.NaN, dmax=np.NaN, \
626 lineAttribOffset=0, \
628 interiorLabels=True):
656 ax = fig.add_subplot(ny, nx, iplot+1)
659 ax.set_title(title,fontsize=5)
662 plotVals = np.asarray([])
664 for iline, lineVals
in enumerate(linesVals):
665 if np.all(np.isnan(lineVals)):
668 _logger.warning(
"skipping all-NaN data")
669 _logger.warning(title+
"; "+dataLabel+
"; "+linesLabel[iline])
670 nanWarnProf=nanWarnProf+1
672 if len(lineVals)!=len(yVals):
675 _logger.warning(
"skipping data where len(x)!=len(y)")
676 _logger.warning(title+
"; "+dataLabel+
"; "+linesLabel[iline])
677 lenWarnProf=lenWarnProf+1
681 pColor = pu.plotColor(len(linesVals),iline+lineAttribOffset)
683 ax.plot(lineVals, yVals, \
685 label=linesLabel[iline], \
686 ls=pu.plotLineStyle(len(linesVals),iline+lineAttribOffset), \
689 plotVals = np.append(plotVals,lineVals)
692 if linesValsMinCI
is not None and \
693 linesValsMaxCI
is not None:
697 significant = np.empty(len(lineVals))
698 significant[:] = np.NaN
700 significant = np.multiply(linesValsMinCI[iline], linesValsMaxCI[iline])
701 significant = np.array([x
if np.isfinite(x)
else -1.0
for x
in significant])
703 lineArr = np.array(lineVals)
704 yArr = np.array(yVals)
705 negsiginds = np.array([i
for i,x
in enumerate(significant)
706 if (x > 0.0
and lineArr[i] < 0.0)],dtype=int)
707 if len(negsiginds) > 0:
708 ax.plot(lineArr[negsiginds], yArr[negsiginds], \
714 possiginds = np.array([i
for i,x
in enumerate(significant)
715 if (x > 0.0
and lineArr[i] > 0.0)],dtype=int)
716 if len(possiginds) > 0:
717 ax.plot(lineArr[possiginds], yArr[possiginds], \
723 ax.plot(linesValsMinCI[iline], yVals, \
728 ax.plot(linesValsMaxCI[iline], yVals, \
733 ax.fill_betweenx(yVals, linesValsMinCI[iline], linesValsMaxCI[iline], \
736 linewidth=0.0, alpha = 0.1)
737 ax.fill_betweenx(yVals, linesValsMinCI[iline], linesValsMaxCI[iline], \
738 where=significant > 0.0, \
741 linewidth=0.2, alpha = 0.3)
744 ax.tick_params(axis=
'x',labelbottom=
False)
745 ax.tick_params(axis=
'y',labelleft=
False)
750 ax.plot([0., 0.], [yVals[0], yVals[-1]], ls=
"--", c=
".3", \
751 linewidth=0.7,markersize=0)
754 mindval, maxdval = pu.get_clean_ax_limits(dmin,dmax,plotVals,signdef)
757 ax.xaxis.set_tick_params(labelsize=3)
758 ax.yaxis.set_tick_params(labelsize=3)
760 isLogScale = logscale
762 nonzero = np.logical_and(np.greater(np.abs(plotVals), 0.), np.isfinite(plotVals))
763 if nonzero.sum() > 0:
764 vmin = np.nanmin(np.abs(plotVals[nonzero]))
765 vmax = np.nanmax(np.abs(plotVals[nonzero]))
768 if vmax / vmin > 10.0:
773 ax.set_xscale(
'symlog')
777 if isLogScale
and np.isfinite(maxdval)
and maxdval > 0.:
778 ax.set_xlim(
None, maxdval)
779 if np.abs(mindval) > 0.:
780 ax.set_xlim(mindval,
None)
784 ax.ticklabel_format(style=
'sci', axis=
'x', scilimits=(0,0))
785 if (np.isfinite(mindval)
and
786 np.isfinite(maxdval)):
787 ax.set_xlim(mindval,maxdval)
788 if maxdval-mindval < 1.0
or \
789 maxdval-mindval > 100.0:
790 ax.tick_params(axis=
'x',rotation=-35)
791 ax.xaxis.get_offset_text().set_fontsize(3)
795 ix = int(iplot)%int(nx)
796 iy = int(iplot)/int(nx)
797 if not interiorLabels \
798 and (iy < ny-2
or ( iy == ny-2
and (int(nplots)%int(nx)==0
or ix <= (int(nplots)%int(nx) - 1)) )):
799 ax.tick_params(axis=
'x',labelbottom=
False)
800 if interiorLabels
or ix == 0:
801 ax.set_xlabel(dataLabel,fontsize=4)
802 if interiorLabels
or iy == ny-1:
803 ax.set_ylabel(indepLabel,fontsize=4)
806 if nLines <= maxLegendEntries:
809 lh = ax.legend(loc=
'best',fontsize=3,frameon=
True,\
810 framealpha=0.4,ncol=1)
811 lh.get_frame().set_linewidth(0.0)
812 elif ix==nx-1
or iplot==nplots-1:
814 ax.legend(loc=
'upper left',fontsize=3,frameon=
False, \
815 bbox_to_anchor=(1.02, 1), borderaxespad=0)
829 xsDates, linesVals, \
831 title="", dataLabel="", \
832 sciticks=False, logscale = False, signdef=False, \
833 ny=1, nx=1, nplots=1, iplot=0, \
834 linesValsMinCI=None, linesValsMaxCI=None, \
835 dmin=np.NaN, dmax=np.NaN, \
836 lineAttribOffset=0, \
838 interiorLabels=True):
865 ax = fig.add_subplot(ny, nx, iplot+1)
868 ax.set_title(title,fontsize=5)
871 plotVals = np.asarray([])
874 for iline, lineVals
in enumerate(linesVals):
875 if np.all(np.isnan(lineVals)):
878 _logger.warning(
"skipping all-NaN data")
879 _logger.warning(title+
"; "+dataLabel+
"; "+linesLabel[iline])
880 nanWarnTS=nanWarnTS+1
884 if isinstance(xsDates[0],(list,np.ndarray)):
885 xVals = pu.TDeltas2Seconds(xsDates[min([iline,len(xsDates)-1])])
887 xVals = pu.TDeltas2Seconds(xsDates)
889 if len(lineVals)!=len(xVals):
892 _logger.warning(
"skipping data where len(x)!=len(y)")
893 _logger.warning(title+
"; "+dataLabel+
"; "+linesLabel[iline])
894 lenWarnTS=lenWarnTS+1
901 minX = min([xVals[0], minX])
902 maxX = max([xVals[-1], maxX])
906 pColor = pu.plotColor(len(linesVals),iline+lineAttribOffset)
908 ax.plot(xVals, lineVals, \
909 label=linesLabel[iline], \
911 ls=pu.plotLineStyle(len(linesVals),iline+lineAttribOffset), \
914 plotVals = np.append(plotVals, lineVals)
917 if linesValsMinCI
is not None and \
918 linesValsMaxCI
is not None:
922 significant = np.empty(len(lineVals))
923 significant[:] = np.NaN
925 significant = np.multiply(linesValsMinCI[iline], linesValsMaxCI[iline])
926 significant = np.array([x
if np.isfinite(x)
else -1.0
for x
in significant])
928 lineArr = np.array(lineVals)
929 xArr = np.array(xVals)
930 negsiginds = np.array([i
for i,x
in enumerate(significant)
931 if (x > 0.0
and lineArr[i] < 0.0)],dtype=int)
932 if len(negsiginds) > 0:
933 ax.plot(xArr[negsiginds], lineArr[negsiginds], \
939 possiginds = np.array([i
for i,x
in enumerate(significant)
940 if (x > 0.0
and lineArr[i] > 0.0)],dtype=int)
941 if len(possiginds) > 0:
942 ax.plot(xArr[possiginds], lineArr[possiginds], \
948 ax.plot(xVals, linesValsMinCI[iline], \
953 ax.plot(xVals, linesValsMaxCI[iline], \
958 ax.fill_between(xVals, linesValsMinCI[iline], linesValsMaxCI[iline], \
961 linewidth=0.0, alpha = 0.1)
962 ax.fill_between(xVals, linesValsMinCI[iline], linesValsMaxCI[iline], \
963 where=significant > 0.0, \
966 linewidth=0.2, alpha = 0.3)
969 ax.tick_params(axis=
'x',labelbottom=
False)
970 ax.tick_params(axis=
'y',labelleft=
False)
974 mindval, maxdval = pu.get_clean_ax_limits(dmin,dmax,plotVals,signdef)
978 ax.plot([minX, maxX], [0., 0.], ls=
"--", c=
".3", \
979 linewidth=0.7,markersize=0)
982 if isinstance(xsDates[0],(list,np.ndarray)):
983 pu.format_x_for_dates(ax, xsDates[0])
985 pu.format_x_for_dates(ax, xsDates)
987 ax.xaxis.set_tick_params(labelsize=3)
988 ax.yaxis.set_tick_params(labelsize=3)
989 isLogScale = logscale
991 nonzero = np.logical_and(np.greater(np.abs(plotVals), 0.), np.isfinite(plotVals))
992 if nonzero.sum() > 0:
993 vmin = np.nanmin(np.abs(plotVals[nonzero]))
994 vmax = np.nanmax(np.abs(plotVals[nonzero]))
997 if vmax / vmin > 10.0:
1002 ax.set_yscale(
'symlog')
1006 if isLogScale
and np.isfinite(maxdval)
and maxdval > 0.:
1007 ax.set_ylim(
None, maxdval)
1008 if np.abs(vmin) > 0.:
1009 ax.set_ylim(vmin,
None)
1013 ax.ticklabel_format(style=
'sci', axis=
'y', scilimits=(0,0))
1014 if (np.isfinite(mindval)
and
1015 np.isfinite(maxdval)):
1016 ax.set_ylim(mindval,maxdval)
1017 if maxdval-mindval < 1.0
or \
1018 maxdval-mindval > 100.0:
1019 ax.tick_params(axis=
'y',rotation=-35)
1020 ax.yaxis.get_offset_text().set_fontsize(3)
1025 ix = int(iplot)%int(nx)
1026 iy = int(iplot)/int(nx)
1027 if not interiorLabels \
1028 and (iy < ny-2
or ( iy == ny-2
and (int(nplots)%int(nx)==0
or ix <= (int(nplots)%int(nx) - 1)) )):
1029 ax.tick_params(axis=
'x',labelbottom=
False)
1030 if interiorLabels
or ix == 0:
1031 ax.set_ylabel(dataLabel,fontsize=4)
1034 if nLines <= maxLegendEntries:
1037 nlcol = np.int(np.ceil(np.sqrt(nLines)))
1038 lh = ax.legend(loc=
'best',fontsize=3,frameon=
True,\
1039 framealpha=0.4,ncol=nlcol)
1040 lh.get_frame().set_linewidth(0.0)
1041 elif ix==nx-1
or iplot==nplots-1:
1043 ax.legend(loc=
'upper left',fontsize=3,frameon=
False, \
1044 bbox_to_anchor=(1.02, 1), borderaxespad=0)
1052 xDates, yVals, contourVals, \
1053 title="", clabel="", \
1054 sciticks=False, logscale=False, signdef=False, \
1055 dataLabel="y", invert_ind_axis=False, \
1056 ny=1, nx=1, nplots=1, iplot=0, \
1057 dmin=np.NaN, dmax=np.NaN,
1058 interiorLabels=True):
1080 ax = fig.add_subplot(ny, nx, iplot+1)
1082 if (np.isnan(contourVals)).all():
1083 ax.tick_params(axis=
'x',labelbottom=
False)
1084 ax.tick_params(axis=
'y',labelleft=
False)
1087 xVals = pu.TDeltas2Seconds(xDates)
1090 mindval, maxdval = pu.get_clean_ax_limits(dmin,dmax,contourVals,signdef)
1096 cint = contourVals.astype(int)
1097 isInt = np.all((contourVals - cint) == 0)
1099 minscid = np.nanmax(np.array([1., dmin]))
1101 minscid = maxdval*1.e-5
1102 lognorm = colors.LogNorm(vmin=minscid, vmax=maxdval)
1104 cmapName =
'seismic'
1108 lognorm = colors.SymLogNorm(vmin=mindval, vmax=maxdval,
1109 linthresh=1.e-3*maxdval, linscale=1.3, base=10)
1117 cmap = plt.get_cmap(cmapName)
1118 cmap.set_bad(color =
'k', alpha = 1.0)
1122 levels = MaxNLocator(nbins=nlevs).tick_values(mindval,maxdval)
1123 norm = BoundaryNorm(levels, ncolors=cmap.N, clip=
True)
1125 cp = ax.pcolormesh(xVals_pcolor, yVals_pcolor, contourVals, cmap=cmap, norm=norm)
1128 ax.set_title(title,fontsize=5)
1131 pu.format_x_for_dates(ax, xDates)
1132 ax.xaxis.set_tick_params(labelsize=3)
1133 ax.yaxis.set_tick_params(labelsize=3)
1136 ix = int(iplot)%int(nx)
1137 iy = int(iplot)/int(nx)
1138 if not interiorLabels \
1139 and (iy < ny-2
or ( iy == ny-2
and (int(nplots)%int(nx)==0
or ix <= (int(nplots)%int(nx) - 1)) )):
1140 ax.tick_params(axis=
'x',labelbottom=
False)
1141 if interiorLabels
or ix == 0:
1142 ax.set_ylabel(dataLabel,fontsize=4)
1143 if interiorLabels
or ix == nx-1:
1145 m = plt.cm.ScalarMappable(cmap=cmap)
1146 m.set_array(contourVals)
1148 if (np.isfinite(mindval)
and
1149 np.isfinite(maxdval)
and
1151 m.set_clim(mindval,maxdval)
1152 cb = plt.colorbar(m, ax=ax)
1154 if sciticks
and not logscale:
1155 cb.ax.ticklabel_format(style=
'sci', axis=
'y', scilimits=(0,0))
1156 cb.ax.yaxis.get_offset_text().set_fontsize(3)
1158 cb.ax.tick_params(labelsize=3)
1159 cb.set_label(clabel,fontsize=5)
1174 xs_diff = xs[1] - xs[0]
1177 xs_extend = [xs[0]-xs_diff]
1179 for x
in xs: xs_extend.append(x)
1181 xs_extend.append(xs_extend[-1]+(xs[-1]-xs[-2]))
1183 xs_pcolormesh_midpoints = []
1184 for ii, x
in enumerate(xs_extend[:-1]):
1185 xs_pcolormesh_midpoints.append(x+0.5*(xs_extend[ii+1] - xs_extend[ii]))
1187 ys_diff = ys[1] - ys[0]
1190 ys_extend = [ys[0]-ys_diff]
1192 for y
in ys: ys_extend.append(y)
1194 ys_extend.append(ys_extend[-1]+(ys[-1]-ys[-2]))
1196 ys_pcolormesh_midpoints = []
1197 for ii, y
in enumerate(ys_extend[:-1]):
1198 ys_pcolormesh_midpoints.append(y+0.5*(ys_extend[ii+1] - ys_extend[ii]))
1200 return xs_pcolormesh_midpoints, ys_pcolormesh_midpoints
1211 ny=1, nx=1, nplots=1, iplot=0,
1214 interiorLabels=True):
1232 ax = fig.add_subplot(ny, nx, iplot+1)
1235 ax.set_title(title,fontsize=5)
1240 for ihist, countVals
in enumerate(countsVals):
1241 if np.all(np.isnan(countVals)):
1244 _logger.warning(
"skipping all-NaN data")
1245 _logger.warning(title+
"; "+indepLabel+
"; "+countsLabel[ihist])
1246 nanWarnPDF=nanWarnPDF+1
1248 if len(countVals)!=len(xVals):
1251 _logger.warning(
"skipping data where len(x)!=len(y)")
1252 _logger.warning(title+
"; "+indepLabel+
"; "+countsLabel[ihist])
1253 lenWarnPDF=lenWarnPDF+1
1259 dx = xVals[1] - xVals[0]
1261 ax.plot(xVals, np.divide(countVals,np.sum(countVals)*dx),
1262 color=pu.plotColor(len(countsVals),ihist+lineAttribOffset),
1263 label=countsLabel[ihist],
1264 ls=pu.plotLineStyle(len(countsVals),ihist+lineAttribOffset),
1267 plotVals.append(countVals)
1271 ax.tick_params(axis=
'x',labelbottom=
False)
1272 ax.tick_params(axis=
'y',labelleft=
False)
1276 from scipy.stats
import norm
1277 ax.plot(xVals, norm.pdf(xVals),
1285 ax.xaxis.set_tick_params(labelsize=3)
1286 ax.yaxis.set_tick_params(labelsize=3)
1288 ax.set_ylim(bottom=1.e-6)
1291 ix = int(iplot)%int(nx)
1292 iy = int(iplot)/int(nx)
1293 if not interiorLabels \
1294 and (iy < ny-2
or ( iy == ny-2
and (int(nplots)%int(nx)==0
or ix <= (int(nplots)%int(nx) - 1)) )):
1295 ax.tick_params(axis=
'x',labelbottom=
False)
1296 if interiorLabels
or ix == 0:
1297 ax.set_xlabel(indepLabel,fontsize=4)
1298 ax.set_ylabel(
'PDF',fontsize=4)
1303 lh = ax.legend(loc=
'best',fontsize=3,frameon=
True,\
1304 framealpha=0.4,ncol=1)
1305 lh.get_frame().set_linewidth(0.0)
1306 elif ix==nx-1
or iplot==nplots-1:
1308 ax.legend(loc=
'upper left',fontsize=3,frameon=
False, \
1309 bbox_to_anchor=(1.02, 1), borderaxespad=0)
1325 title="", dataLabel="y", \
1327 ny=1, nx=1, nplots=1, iplot=0,
1330 interiorLabels=True):
1352 ax = fig.add_subplot(ny, nx, iplot+1)
1353 ix = int(iplot)%int(nx)
1354 iy = int(iplot)/int(nx)
1357 ax.set_title(title,fontsize=5)
1362 linesLabel = [
'RMS',
'STD',
'Mean']
1363 for iline, lineVals
in enumerate([rmsVals,stdVals,meanVals]):
1364 if np.all(np.isnan(lineVals)):
1367 _logger.warning(
"skipping all-NaN data")
1368 _logger.warning(title+
"; "+indepLabel+
"; "+linesLabel[iline])
1369 nanWarnRamp=nanWarnRamp+1
1371 if len(lineVals)!=len(xVals):
1374 _logger.warning(
"skipping data where len(x)!=len(y)")
1375 _logger.warning(title+
"; "+indepLabel+
"; "+linesLabel[iline])
1376 lenWarnRamp=lenWarnRamp+1
1380 pColor = pu.plotColor(4,iline+lineAttribOffset)
1382 ax.plot(xVals, lineVals,
1384 label=linesLabel[iline],
1385 ls=pu.plotLineStyle(4,iline+lineAttribOffset),
1388 plotVals.append(lineVals)
1391 ax.tick_params(axis=
'x',labelbottom=
False)
1392 ax.tick_params(axis=
'y',labelleft=
False)
1396 ind0 = np.argmax(countVals)
1399 for ii, std
in enumerate(stdVals):
1400 if np.isfinite(std): indexMaxX4Std = ii
1401 indexMaxX = indexMaxX4Std
1403 for ii, count
in enumerate(countVals):
1404 if count > maxCount: maxCount = count
1405 if count < 0.002*maxCount:
1408 if indexMaxX > indexMaxX4Std:
1409 ind1 = np.argmax(stdVals[0:indexMaxX4Std])
1411 ind1 = np.argmax(stdVals[0:indexMaxX])
1413 weights = [0.2]*(ind1-ind0+1)
1415 p = np.polyfit(xVals[ind0:ind1+1],stdVals[ind0:ind1+1],1,
1419 ERR0 = X0 * p[0] + p[1]
1423 ERR1 = stdVals[ind1]
1424 X1 = (ERR1 - p[1]) / p[0]
1429 'X': [round(X0,2), round(X1,2)],
1430 'ERR': [round(ERR0,2), round(ERR1,2)],
1433 'X0': [round(X0,2)],
1434 'X1': [round(X1,2)],
1435 'ERR0': [round(ERR0,2)],
1436 'ERR1': [round(ERR1,2)],
1440 fitX = np.asarray([0.0] + ERRfitDict[
'bu'][
'X'] + [xVals[indexMaxX4Std]])
1441 fitERR = np.asarray([ERR0] + ERRfitDict[
'bu'][
'ERR'] + [ERR1])
1443 plotVals.append(fitERR)
1445 pColor = pu.plotColor(4,1+lineAttribOffset)
1447 ax.plot(fitX, fitERR,
1457 ax.xaxis.set_tick_params(labelsize=3)
1458 ax.yaxis.set_tick_params(labelsize=3)
1461 mindval, maxdval = pu.get_clean_ax_limits(plotVals=plotVals)
1462 if (np.isfinite(mindval)
and
1463 np.isfinite(maxdval)):
1464 ax.set_ylim(mindval,maxdval)
1467 if not interiorLabels \
1468 and (iy < ny-2
or ( iy == ny-2
and (int(nplots)%int(nx)==0
or ix <= (int(nplots)%int(nx) - 1)) )):
1469 ax.tick_params(axis=
'x',labelbottom=
False)
1470 if interiorLabels
or ix == 0:
1471 ax.set_xlabel(indepLabel,fontsize=4)
1472 if interiorLabels
or iy == ny-1:
1473 ax.set_ylabel(dataLabel,fontsize=4)
1478 lh = ax.legend(loc=
'best',fontsize=3,frameon=
True,\
1479 framealpha=0.4,ncol=1)
1480 lh.get_frame().set_linewidth(0.0)
1481 elif ix==nx-1
or iplot==nplots-1:
1483 ax.legend(loc=
'upper left',fontsize=3,frameon=
False, \
1484 bbox_to_anchor=(1.02, 1), borderaxespad=0)
1491 if interiorLabels
or ix == nx:
1492 ax2.set_ylabel(
'Count',fontsize=4,color=color)
1493 ax2.plot(xVals[:indexMaxX4Std], countVals[:indexMaxX4Std],
1498 ax2.tick_params(axis=
'y', labelcolor=color)
1499 ax2.yaxis.set_tick_params(labelsize=3)
1501 ax2.set_ylim(bottom=100.)
def plotfitRampComposite(fig, xVals, countVals, meanVals, rmsVals, stdVals, title="", dataLabel="y", indepLabel="x", ny=1, nx=1, nplots=1, iplot=0, lineAttribOffset=1, legend_inside=True, interiorLabels=True)
def plotTimeserial2D(Stats, xlabeltime, ylevels, VarName)
def transformXY_for_pcolor(xs, ys)
def plotTimeSeries(fig, xsDates, linesVals, linesLabel, title="", dataLabel="", sciticks=False, logscale=False, signdef=False, ny=1, nx=1, nplots=1, iplot=0, linesValsMinCI=None, linesValsMaxCI=None, dmin=np.NaN, dmax=np.NaN, lineAttribOffset=0, legend_inside=True, interiorLabels=True)
def plotSeries(fig, linesVals, xVals, linesLabel, title="", dataLabel="y", sciticks=False, logscale=False, signdef=False, indepLabel="x", invert_ind_axis=False, ny=1, nx=1, nplots=1, iplot=0, linesValsMinCI=None, linesValsMaxCI=None, dmin=np.NaN, dmax=np.NaN, lineAttribOffset=0, legend_inside=True, interiorLabels=True)
def scatterMapFields(lons, lats, fields, filename, minLon=-180., maxLon=180., minLat=-90., maxLat=90., cLon=None, projection='default', dmin=None, dmax=None, markers={}, sizes={}, cmap='gist_ncar', cbarType=None, c={}, logVLim=1.e-12)
def plotPDF(fig, countsVals, xVals, countsLabel, title="", indepLabel="x", ny=1, nx=1, nplots=1, iplot=0, lineAttribOffset=1, legend_inside=True, interiorLabels=True)
def plotTimeSeries2D(fig, xDates, yVals, contourVals, title="", clabel="", sciticks=False, logscale=False, signdef=False, dataLabel="y", invert_ind_axis=False, ny=1, nx=1, nplots=1, iplot=0, dmin=np.NaN, dmax=np.NaN, interiorLabels=True)
def plotDistri(lats, lons, values, ObsType, VarName, var_unit, out_name, nstation, levbin, dmin=None, dmax=None, dotsize=6, color="rainbow")
def plotProfile(fig, linesVals, yVals, linesLabel, title="", dataLabel="x", sciticks=False, logscale=False, signdef=False, indepLabel="y", invert_ind_axis=False, ny=1, nx=1, nplots=1, iplot=0, linesValsMinCI=None, linesValsMaxCI=None, dmin=np.NaN, dmax=np.NaN, lineAttribOffset=0, legend_inside=True, interiorLabels=True)