IODA
04-VariablesAttributesAndDimensions.cpp
Go to the documentation of this file.
1 /*
2  * (C) Copyright 2020-2021 UCAR
3  *
4  * This software is licensed under the terms of the Apache Licence Version 2.0
5  * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
6  */
7 /*! \addtogroup ioda_cxx_ex
8  *
9  * @{
10  *
11  * \defgroup ioda_cxx_ex_4 Ex 4: Variables, Attributes, and Dimension Scales
12  * \brief Variables, Attributes, and Dimension Scales
13  * \see 04-VariablesAttributesAndDimensions.cpp for comments and the walkthrough.
14  *
15  * @{
16  *
17  * \file 04-VariablesAttributesAndDimensions.cpp
18  * \brief Variables, Attributes, and Dimension Scales
19  *
20  * Variables store data, but how should this data be interpreted? This is the
21  * purpose of attributes. Attributes are bits of metadata that can describe groups
22  * and variables. Good examples of attributes include tagging the units of a variable,
23  * giving it a descriptive range, listing a variable's valid range, or "coding" missing
24  * or invalid values.
25  *
26  * Basic manipulation of attributes was already discussed in Tutorial 2. Now, we want to
27  * focus instead on good practices with tagging your data.
28  *
29  * Supplementing attributes, we introduce the concept of adding "dimension scales" to your
30  * data. Basically, your data have dimensions, but we want to attach a "meaning" to each
31  * axis of your data. Typically, the first axis corresponds to your data's Location.
32  * A possible second axis for brightness temperature data might be "instrument channel", or
33  * maybe "pressure level". This tutorial will show you how to create new dimension scales and
34  * attach them to new Variables.
35  *
36  * \author Ryan Honeyager (honeyage@ucar.edu)
37  **/
38 
39 #include <array> // Arrays are fixed-length vectors.
40 #include <iostream> // We want I/O.
41 #include <string> // We want strings
42 #include <valarray> // Like a vector, but can also do basic element-wise math.
43 #include <vector> // We want vectors
44 
45 #include "Eigen/Dense" // Eigen Arrays and Matrices
46 #include "ioda/Engines/Factory.h" // Used to kickstart the Group engine.
47 #include "ioda/Exception.h" // Exceptions and debugging
48 #include "ioda/Group.h" // Groups have attributes.
49 #include "unsupported/Eigen/CXX11/Tensor" // Eigen Tensors
50 
51 int main(int argc, char** argv) {
52  using namespace ioda; // All of the ioda functions are here.
53  using std::cerr;
54  using std::endl;
55  using std::string;
56  using std::vector;
57  try {
58  // We want to open a new file, backed by HDF5.
59  // We open this file as a root-level Group.
60  Group g = Engines::constructFromCmdLine(argc, argv, "Example-04.hdf5");
61 
62  // Let's start with dimensions and Dimension Scales.
63 
64  // ioda stores data using Variables, and you can view each variable as a
65  // multidimensional matrix of data. This matrix has dimensions.
66  // A dimension may be used to represent a real physical dimension, for example,
67  // time, latitude, longitude, or height. A dimension might also be used to
68  // index more abstract quantities, for example, color-table entry number,
69  // instrument number, station-time pair, or model-run ID
70  //
71  // A dimension scale is simply another variable that provides context, or meaning,
72  // to a particular dimension. For example, you might have ATMS brightness
73  // temperature information that has dimensions of location by channel number. In ioda,
74  // we want every "axis" of a variable to be associated with an explanatory dimension.
75 
76  // Let's create a few dimensions... Note: when working with an already-existing Obs Space,
77  // (covered later), these dimensions may already be present.
78 
79  // Create two dimensions, "Location", and "ATMS Channel". Set distinct values within
80  // these dimensions.
81  const int num_locs = 3000;
82  const int num_channels = 23;
84  = g.vars.create<int>("Location", {num_locs})
85  .writeWithEigenRegular(Eigen::ArrayXi(num_locs).setLinSpaced(1, num_locs))
86  .setIsDimensionScale("Location");
88  = g.vars.create<int>("ATMS Channel", {num_channels})
89  .writeWithEigenRegular(Eigen::ArrayXi(num_channels).setLinSpaced(1, num_channels))
90  .setIsDimensionScale("ATMS Channel Number");
91 
92  // Now that we have created dimensions, we can create new variables and attach the
93  // dimensions to our data.
94 
95  // But first, a note about attributes:
96  // Attributes provide metadata that describe our variables.
97  // In IODA, we at least must to keep track of each variable's:
98  // - Units (in SI; we follow CF conventions)
99  // - Long name
100  // - Range of validity. Data outside of this range are automatically rejected for
101  // future processing.
102 
103  // Let's create variables for Latitude, Longitude and for
104  // ATMS Observed Brightness Temperature.
105 
106  // There are two ways to define a variable that has attached dimensions.
107  // First, we can explicitly create a variable and set its dimensions.
108 
109  // Longitude has dimensions of Location. It has units of degrees_east, and has
110  // a valid_range of (-180,180).
111  ioda::Variable longitude = g.vars.create<float>("Longitude", {num_locs});
112  longitude.setDimScale(dim_location);
113  longitude.atts.add<float>("valid_range", {-180, 180})
114  .add<std::string>("units", std::string("degrees_east"))
115  .add<std::string>("long_name", std::string("Longitude"));
116 
117  // The above method is a bit clunky because you have to make sure that the new variable's
118  // dimensions match the sizes of each dimension.
119  // Alternatively, there is a convenience function, ".createWithScales", that
120  // condenses this a bit for you.
121 
122  // Latitude has units of degrees_north, and a valid_range of (-90,90).
123  ioda::Variable latitude = g.vars.createWithScales<float>("Latitude", {dim_location});
124  latitude.atts.add<float>("valid_range", {-90, 90})
125  .add<std::string>("units", std::string("degrees_north"))
126  .add<std::string>("long_name", std::string("Latitude"));
127 
128  // The ATMS Brightness Temperature depends on both location and instrument channel number.
130  = g.vars.createWithScales<float>("Brightness Temperature", {dim_location, dim_channel});
131  tb.atts.add<float>("valid_range", {100, 500})
132  .add<std::string>("units", std::string("K"))
133  .add<std::string>("long_name",
134  std::string("ATMS Observed (Uncorrected) Brightness Temperature"));
135 
136  // Advanced topic:
137 
138  // Variable Parameter Packs
139  // When creating variables, you can also provide an optional
140  // VariableCreationParameters structure. This struct lets you specify
141  // the variable's fill value (a default value that is a placeholder for unwritten data).
142  // It also lets you specify whether you want to compress the data stored in the variable,
143  // and how you want to store the variable (contiguously or in chunks).
144 
146 
147  // Fill values:
148  // The "fill value" for a dataset is the specification of the default value assigned
149  // to data elements that have not yet been written.
150  // When you first create a variable, it is empty. If you read in a part of a variable that
151  // you have not filled with data, then ioda has to return fake, filler data.
152  // A fill value is a "bit pattern" that tells ioda what to return.
153  params.setFillValue<float>(-999);
154 
155  // Variable storage: contiguous or chunked
156  // See https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/ and
157  // https://www.unidata.ucar.edu/blogs/developer/en/entry/chunking_data_why_it_matters
158  // for detailed explanations.
159  // To tell ioda that you want to chunk a variable:
160  params.chunk = true; // Turn chunking on
161  params.chunks = {100}; // Each chunk is a size 100 block of data.
162 
163  // Compression
164  // If you are using chunked storage, you can tell ioda that you want to compress
165  // the data using ZLIB or SZIP.
166  // - ZLIB / GZIP:
167  params.compressWithGZIP();
168  // - SZIP
169  // params.compressWithSZIP(int pixelsPerBlock);
170 
171  // Let's create one final variable, "Solar Zenith Angle", and let's use
172  // out new variable creation parameters.
173  auto SZA = g.vars.createWithScales<float>("Solar Zenith Angle", {dim_location}, params);
174 
175  SZA.atts.add<float>("valid_range", {-90, 90}).add<std::string>("units", std::string("degrees"));
176 
177  // Done!
178  } catch (const std::exception& e) {
180  return 1;
181  }
182  return 0;
183 }
184 
185 /// @}
186 /// @}
IODA's error system.
Definitions for setting up backends with file and memory I/O.
Interfaces for ioda::Group and related classes.
Groups are a new implementation of ObsSpaces.
Definition: Group.h:159
Variables store data!
Definition: Variable.h:680
IODA_DL Group constructFromCmdLine(int argc, char **argv, const std::string &defaultFilename)
This is a wrapper function around the constructBackend function for creating a backend based on comma...
Definition: Factory.cpp:21
int main(int argc, char **argv)
IODA_DL void unwind_exception_stack(const std::exception &e, std::ostream &out=std::cerr, int level=0)
Convenience function for unwinding an exception stack.
Definition: Exception.cpp:48
Used to specify Variable creation-time properties.
Definition: Has_Variables.h:57