IODA
03-VariablesIntro.py
Go to the documentation of this file.
1 #
2 # (C) Copyright 2020-2021 UCAR
3 #
4 # This software is licensed under the terms of the Apache Licence Version 2.0
5 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
6 #
7 
8 # Variables store data. They are generally treated as an extension of
9 # Attributes; everything an Attribute can do, a Variable can do better.
10 # Variables are resizable, chunkable and compressible. They fully support
11 # multidimensional data. They may have attached
12 # dimension scales*, which gives their dimensions meaning. Variables
13 # may be read and written to using Eigen objects, xTensors, and other
14 # user-friendly classes for data manipulation (i.e. replacement ObsDataVectors).
15 
16 import os
17 import sys
18 
19 import ioda
20 # TODO: Uncomment once we are sure that numpy is a required dependency!
21 #import numpy # numpy is very useful when handling multidimensional data.
22 
24  name = "Example-03-python.hdf5",
25  mode = ioda.Engines.BackendCreateModes.Truncate_If_Exists)
26 
27 # You can access all the variables in a group using the ".vars" member object.
28 # i.e. g.vars;
29 
30 # ".vars" is an instance of the "Has_Variables" class. This class is defined
31 # in "include/ioda/Variables/Has_Variables.h". Like with Has_Attributes, the
32 # definition is slightly convoluted, but the key point to remember is that
33 # everything in Has_Varables_Base is available to Has_Variables.
34 # Also remember to check the Doxygen documentation if you get confused.
35 
36 # Let's make some Variables.
37 
38 # Basic variable creation and writing
39 
40 # The create function is the same as for Attributes.
41 intvar1 = g.vars.create(name='var-1', dtype=ioda.Types.int32, dimsCur=[2,3])
42 # The writeVector functions are likewise identical.
43 intvar1.writeVector.int32([1,2,3,4,5,6])
44 # Note: we seldom have variables that have only one element. So,
45 # variables have no readDatum and writeDatum functions.
46 
47 var2 = g.vars.create(name='var-2', dtype=ioda.Types.float, dimsCur=[2,3,4])
48 var2.writeVector.float([1.1,2.2,3.14159,4,5,6,7,8,9,10,11.5,12.6,13,14,15,16,17,18,19,20,21,22,23,24])
49 
50 # Creating and writing multidimensional objects:
51 # TODO: needs numpy in the example environment.
52 # The writeNPArray functions can write any type of numpy array.
53 #var_md = g.vars.create(name='var-md', dtype=ioda.Types.float, dimsCur=[2,3])
54 #var_md_data = np.fromfunction(lambda i, j: i + (j / 2), (2,3), dtype=float)
55 #var_md.writeNPArray.float(var_md_data)
56 
57 # Advanced:
58 # Making a chunked, resizable, compressed variable with default element values.
59 # Chunking expresses how contiguous subsets of data are stored on-disk
60 # and in-memory. It is needed to enable internal data compression.
61 # Usually, ioda sets sensible defaults for chunk sizes
62 # when you create a variable using the ObsGroup interface (Example 5).
63 # But, you might want to override it.
64 # Likewise, ioda usually sets a sensible default for the "fill value"
65 # of a variable (the value used to express missing or unwritten data).
66 # All of these variable creation properties can be controlled by passing
67 # a customized VariableCreationParameters object on function creation.
68 
70 p1.chunk = True
71 p1.chunks = [200, 3]
72 p1.setFillValue.int32(-999)
73 p1.compressWithGZIP()
74 g.vars.create(name='var-3', dtype=ioda.Types.int32, dimsCur=[200,3], dimsMax=[2000,3], params=p1)
75 
76 # Listing variables and checking existence
77 # Same as with attributes.
78 
79 g.vars.list() # Returns a list
80 
81 if len(g.vars.list()) > 5:
82  raise Exception("Way too many variables were created.")
83 
84 if g.vars.exists('var-2') == False:
85  raise Exception("Missing var-2")
86 
87 # Create and remove a variable
88 g.vars.create('removable-int', ioda.Types.int32, [1])
89 g.vars.remove('removable-int')
90 
91 # Opening a variable
92 reopened_v3 = g.vars.open('var-3')
93 
94 # Querying type and dimensions
95 
96 reopened_v3.dims # Trivial. Returns dimensions.
97 
98 if reopened_v3.isA2(dtype=ioda.Types.float) == True:
99  raise Exception("var-3 should be a set of int32s, not single-precision floats!")
100 
101 # Reading data... almost the same as with an Attribute.
102 # You can use readVector or readNPArray.
103 # The data type is used when creating the resultant Python / numPy object.
104 vals2 = var2.readVector.float()
105 
IODA_DL Group createFile(const std::string &filename, BackendCreateModes mode, HDF5_Version_Range compat=defaultVersionRange())
Create a ioda::Group backed by an HDF5 file.
Definition: HH.cpp:120
Used to specify Variable creation-time properties.
Definition: Has_Variables.h:57