20 template <
class E,
typename Container>
22 g.atts.addWithEigenRegular(
"data", eigen_data, is2D);
26 typedef typename E::Scalar ScalarType;
27 Eigen::Array<ScalarType, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
check_data;
32 if (eigen_data.rows() !=
check_data.rows())
throw;
33 if (eigen_data.cols() !=
check_data.cols())
throw;
34 for (Eigen::Index i = 0; i < eigen_data.rows(); ++i)
35 for (Eigen::Index j = 0; j < eigen_data.cols(); ++j)
36 if (eigen_data(i, j) !=
check_data(i, j))
throw;
40 if (eigen_data.size() !=
check_data.size())
throw;
42 for (Eigen::Index i = 0; i < eigen_data.rows(); ++i)
43 for (Eigen::Index j = 0; j < eigen_data.cols(); ++j)
44 if (eigen_data(i, j) !=
check_data(i, j))
throw;
48 template <
class E,
typename Container>
50 g.atts.addWithEigenTensor(
"data", eigen_data);
59 for (ioda::Dimensions_t i = 0; i < dims.
numElements; ++i)
60 if (eigen_data.data()[i] !=
check_data.data()[i])
throw;
70 return std::abs(a - b) < 0.00001f;
75 return std::abs(a - b) < 0.00001f;
79 bool test_equal(
const long double& a,
const long double& b) {
80 return std::abs(a - b) < 0.00001f;
83 template <
typename T,
typename Container>
85 std::initializer_list<ioda::Dimensions_t> dimensions) {
87 g.atts.template add<T>(
"initializer_lists", values, dimensions);
91 vector<T> vals{values};
92 g.atts.template add<T>(
"gsl_spans", vals, dimensions);
100 if (adims.dimensionality != gsl::narrow<ioda::Dimensions_t>(dimensions.size()))
throw;
102 vector<ioda::Dimensions_t> dims{dimensions};
103 size_t numElems = (dims.empty()) ? 0 : 1;
104 for (
size_t i = 0; i < dims.size(); ++i) {
105 if (dims[i] != adims.dimsCur[i])
throw;
106 if (dims[i] != adims.dimsMax[i])
throw;
109 if (gsl::narrow<ioda::Dimensions_t>(numElems) != adims.numElements)
throw;
113 vector<T> v_at1_presized(numElems);
118 a_ilist.
read(gsl::make_span(v_at1_presized));
120 if (v_at1.size() != numElems)
throw;
122 for (
size_t i = 0; i < numElems; ++i) {
124 if (!
test_equal(v_at1_presized[i], vals[i]))
throw;
130 template <
class E,
typename Container>
132 typedef typename E::Scalar ScalarType;
136 params_1.
chunk =
true;
140 g.vars.template create<ScalarType>(
"var", {eigen_data.rows(), eigen_data.cols()}, {}, params_1);
141 v_double.writeWithEigenRegular(eigen_data);
154 template <
class E,
typename Container>
156 typedef typename E::Scalar ScalarType;
158 auto v =
g.vars.template create<ScalarType>(
"data", dims.
dimsCur, dims.
dimsMax);
159 v.writeWithEigenTensor(eigen_data);
166 for (ioda::Dimensions_t i = 0; i < dims.
numElements; ++i)
167 if (eigen_data.data()[i] !=
check_data.data()[i])
throw;
174 g.create(
"Test_group_1");
175 auto g2 =
g.create(
"Test_group_2");
176 g2.create(
"Child 1");
179 if (!
g.exists(
"Test_group_1"))
throw;
181 if (!
g.exists(
"Test_group_2/Child 1"))
throw;
184 auto g_list =
g.list();
185 if (g_list.size() != 2)
throw;
187 auto g_list2 =
g.listObjects();
188 if (g_list2.empty())
throw;
191 auto g3 =
g2.open(
"Child 1");
193 auto g4 =
g.open(
"Test_group_2/Child 1");
196 auto gatt =
g.create(
"Attribute Tests");
199 test_attribute_functions<double>(gatt.create(
"double_single"), {3.14159}, {1});
200 test_attribute_functions<double>(gatt.create(
"double_vector"), {0.1, 0.2, 0.3, 0.4}, {4});
201 test_attribute_functions<double>(gatt.create(
"double_array_2x3"), {1.2, 2.4, 3.6, 4.8, 5.9, 6.3}, {2, 3});
202 test_attribute_functions<float>(gatt.create(
"float_array_2x3"), {1.1f, 2.2f, 3.3f, 4.4f, 5.5f, 6.6f},
206 test_attribute_functions<int16_t>(gatt.create(
"int16_t_2x2"), {1, -4, 9, -16}, {2, 2});
207 test_attribute_functions<uint16_t>(gatt.create(
"uint16_t_2x2"), {1, 4, 9, 16}, {2, 2});
208 test_attribute_functions<int32_t>(gatt.create(
"int32_t_2x2"), {1, -4, 9, -16}, {2, 2});
209 test_attribute_functions<uint32_t>(gatt.create(
"uint32_t_2x2"), {1, 4, 9, 16}, {2, 2});
210 test_attribute_functions<int64_t>(gatt.create(
"int64_t_2"), {32768, -131072}, {2});
211 test_attribute_functions<uint64_t>(gatt.create(
"uint64_t_2"), {1073741824, 1099511627776}, {2});
212 test_attribute_functions<long double>(gatt.create(
"ld_1"), {1}, {1});
213 test_attribute_functions<unsigned long>(gatt.create(
"ul_1"), {1}, {1});
214 test_attribute_functions<size_t>(gatt.create(
"size_t"), {1}, {1});
220 test_attribute_functions<char>(gatt.create(
"char_t"), {
'a'}, {1});
222 test_attribute_functions<std::string>(gatt.create(
"string_t"), {
"Hi Steve!",
"This is a test."}, {2});
229 Eigen::ArrayXXi int_array_1(3, 3);
230 int_array_1 << 1, 2, 3, 4, 5, 6, 7, 8, 9;
236 Eigen::Tensor<int, 3> int_tensor_1(2, 3, 4);
237 for (
int i = 0; i < 2; ++i) {
238 for (
int j = 0; j < 3; ++j) {
239 for (
int k = 0; k < 4; ++k) {
240 int_tensor_1(i, j, k) = (3 * i) + (2 * j) + k;
251 params_1.
chunk =
true;
253 auto gvar =
g.create(
"Variable Tests");
254 auto v_double = gvar.vars.create<
double>(
"Double_var", {2, 2}, {2, 2}, params_1);
255 v_double.write<
double>({9.8, 9.8, 2.2, 1.6});
257 test_attribute_functions<int16_t>(v_double, {1, -1, 2, 4}, {2, 2});
259 std::vector<double> check_v_double;
260 v_double.read<
double>(check_v_double);
261 if (check_v_double.size() != 4)
throw;
262 if (check_v_double[0] > 9.9 || check_v_double[0] < 9.7)
throw;
263 if (check_v_double[1] > 9.9 || check_v_double[1] < 9.7)
throw;
264 if (check_v_double[2] > 2.3 || check_v_double[2] < 2.1)
throw;
265 if (check_v_double[3] > 1.7 || check_v_double[3] < 1.5)
throw;
270 params_2.
chunk =
true;
272 auto v_d2 = gvar.vars.create<
double>(
"d2_var", {30}, {90}, params_2);
273 v_d2.write<
double>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
274 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30});
279 Eigen::MatrixXi mat_int_4x4(4, 4);
280 mat_int_4x4 << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
286 auto dim_1 = gvar.vars.create<
int>(
"dim_1", {1}, {1});
287 dim_1.setIsDimensionScale(
"dim_1");
288 auto var_a = gvar.vars.create<
int>(
"var_a_dim_1", {1}, {1});
289 var_a.attachDimensionScale(0, dim_1);
290 if (!var_a.isDimensionScaleAttached(0, dim_1))
throw;
291 var_a.detachDimensionScale(0, dim_1);
292 if (var_a.isDimensionScaleAttached(0, dim_1))
throw;
295 int main(
int argc,
char** argv) {
296 using namespace ioda;
303 }
catch (
const std::exception& e) {
Definitions for setting up backends with file and memory I/O.
Interfaces for ioda::Group and related classes.
This class represents attributes, which may be attached to both Variables and Groups.
Groups are a new implementation of ObsSpaces.
virtual Dimensions getDimensions() const
Get Attribute's dimensions.
virtual Attribute_Implementation read(gsl::span< char > data, const Type &in_memory_dataType) const
The fundamental read function. Backends overload this function to implement all read operations.
IODA_DL Group constructFromCmdLine(int argc, char **argv, const std::string &defaultFilename)
This is a wrapper function around the constructBackend function for creating a backend based on comma...
bool test_equal(const T &a, const T &b)
void test_group_backend_engine(ioda::Group g)
Run a series of tests on the input group.
void test_eigen_regular_variable(Container g, const E &eigen_data)
void test_eigen_regular_attributes(Container g, const E &eigen_data, bool is2D=true)
int main(int argc, char **argv)
void test_eigen_tensor_variable(Container g, const E &eigen_data)
void test_eigen_tensor_attributes(Container g, const E &eigen_data)
void test_attribute_functions(Container g, std::initializer_list< T > values, std::initializer_list< ioda::Dimensions_t > dimensions)
Dimensions getTensorDimensions(EigenClass &e)
IODA_DL void unwind_exception_stack(const std::exception &e, std::ostream &out=std::cerr, int level=0)
Convenience function for unwinding an exception stack.
void check_data(const std::string &name, const std::vector< double > &data, const std::vector< double > &exp_data)
Describes the dimensions of an Attribute or Variable.
std::vector< Dimensions_t > dimsCur
The dimensions of the data.
std::vector< Dimensions_t > dimsMax
This must always equal dimsCur for Attribute.
Used to specify Variable creation-time properties.
void compressWithGZIP(int level=6)
std::vector< Dimensions_t > chunks
Manually specify the chunks. Never directly use. Use getChunks(...) instead.
VariableCreationParameters & setFillValue(DataType fill)
bool chunk
Do we chunk this variable? Required for extendible / compressible Variables.