IODA
iodaio-templated-tests/test.cpp
Go to the documentation of this file.
1 /*
2  * (C) Copyright 2020 UCAR
3  *
4  * This software is licensed under the terms of the Apache Licence Version 2.0
5  * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
6  */
7 #include <Eigen/Dense>
8 #include <cmath>
9 #include <cstdlib>
10 #include <iostream>
11 #include <vector>
12 
13 #include "ioda/Engines/Factory.h"
14 #include "ioda/Exception.h"
15 #include "ioda/Group.h"
16 
17 // These tests really need a better check system.
18 // Boost unit tests would have been excellent here.
19 
20 template <class E, typename Container>
21 void test_eigen_regular_attributes(Container g, const E& eigen_data, bool is2D = true) {
22  g.atts.addWithEigenRegular("data", eigen_data, is2D);
23 
24  // check_data can't be purely of type E, here, since we might be
25  // feeding in a map or a block.
26  typedef typename E::Scalar ScalarType;
27  Eigen::Array<ScalarType, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> check_data;
28  g.atts.readWithEigenRegular("data", check_data);
29 
30  // Check dimensions, then check values.
31  if (is2D) {
32  if (eigen_data.rows() != check_data.rows()) throw;
33  if (eigen_data.cols() != check_data.cols()) throw;
34  for (Eigen::Index i = 0; i < eigen_data.rows(); ++i)
35  for (Eigen::Index j = 0; j < eigen_data.cols(); ++j)
36  if (eigen_data(i, j) != check_data(i, j)) throw;
37  } else {
38  // Data are read as a column vector. No real way to get
39  // around this, since we are storing only a 1-D object.
40  if (eigen_data.size() != check_data.size()) throw;
41  if (eigen_data.rows() != check_data.rows()) check_data.transposeInPlace();
42  for (Eigen::Index i = 0; i < eigen_data.rows(); ++i)
43  for (Eigen::Index j = 0; j < eigen_data.cols(); ++j)
44  if (eigen_data(i, j) != check_data(i, j)) throw;
45  }
46 }
47 
48 template <class E, typename Container>
49 void test_eigen_tensor_attributes(Container g, const E& eigen_data) {
50  g.atts.addWithEigenTensor("data", eigen_data);
51 
52  // TODO(rhoneyager): change to make a tensor from whatever
53  // the input type is.
54  E check_data(eigen_data.dimensions());
55  g.atts.readWithEigenTensor("data", check_data);
56 
58 
59  for (ioda::Dimensions_t i = 0; i < dims.numElements; ++i)
60  if (eigen_data.data()[i] != check_data.data()[i]) throw;
61 }
62 
63 template <typename T>
64 bool test_equal(const T& a, const T& b) {
65  return a == b;
66 }
67 
68 template <>
69 bool test_equal(const float& a, const float& b) {
70  return std::abs(a - b) < 0.00001f;
71 }
72 
73 template <>
74 bool test_equal(const double& a, const double& b) {
75  return std::abs(a - b) < 0.00001f;
76 }
77 
78 template <>
79 bool test_equal(const long double& a, const long double& b) {
80  return std::abs(a - b) < 0.00001f;
81 }
82 
83 template <typename T, typename Container>
84 void test_attribute_functions(Container g, std::initializer_list<T> values,
85  std::initializer_list<ioda::Dimensions_t> dimensions) {
86  // Add attribute using initializer lists
87  g.atts.template add<T>("initializer_lists", values, dimensions);
88 
89  // Add attribute using gsl spans
90  using namespace std;
91  vector<T> vals{values};
92  g.atts.template add<T>("gsl_spans", vals, dimensions);
93 
94  // Open an attribute
95  ioda::Attribute a_spans = g.atts["gsl_spans"];
96  ioda::Attribute a_ilist = g.atts.open("initializer_lists");
97 
98  // Verify dimensionality
99  auto adims = a_spans.getDimensions();
100  if (adims.dimensionality != gsl::narrow<ioda::Dimensions_t>(dimensions.size())) throw;
101  // Verify dimensions
102  vector<ioda::Dimensions_t> dims{dimensions};
103  size_t numElems = (dims.empty()) ? 0 : 1;
104  for (size_t i = 0; i < dims.size(); ++i) {
105  if (dims[i] != adims.dimsCur[i]) throw;
106  if (dims[i] != adims.dimsMax[i]) throw;
107  numElems *= dims[i];
108  }
109  if (gsl::narrow<ioda::Dimensions_t>(numElems) != adims.numElements) throw;
110 
111  // Read the attribute and check values
112  vector<T> v_at1;
113  vector<T> v_at1_presized(numElems);
114  a_ilist.read(v_at1);
115  // int32_t c_arr_at1[6];
116  // at1.read(gsl::make_span(c_arr_at1, 6));
117 
118  a_ilist.read(gsl::make_span(v_at1_presized));
119 
120  if (v_at1.size() != numElems) throw;
121 
122  for (size_t i = 0; i < numElems; ++i) {
123  if (!test_equal(v_at1[i], vals[i])) throw;
124  if (!test_equal(v_at1_presized[i], vals[i])) throw;
125  }
126 
127  // TODO(rhoneyager): Verify data type.
128 }
129 
130 template <class E, typename Container>
131 void test_eigen_regular_variable(Container g, const E& eigen_data) {
132  typedef typename E::Scalar ScalarType;
133  // g.vars.create("data", )
135  params_1.setFillValue<ScalarType>(0);
136  params_1.chunk = true;
137  params_1.compressWithGZIP();
138 
139  auto v_double =
140  g.vars.template create<ScalarType>("var", {eigen_data.rows(), eigen_data.cols()}, {}, params_1);
141  v_double.writeWithEigenRegular(eigen_data);
142 
143  /*
144  std::vector<double> check_v_double;
145  v_double.read<double>(check_v_double);
146  if (check_v_double.size() != 4) throw;
147  if (check_v_double[0] > 9.9 || check_v_double[0] < 9.7) throw;
148  if (check_v_double[1] > 9.9 || check_v_double[1] < 9.7) throw;
149  if (check_v_double[2] > 2.3 || check_v_double[2] < 2.1) throw;
150  if (check_v_double[3] > 1.7 || check_v_double[3] < 1.5) throw;
151  */
152 }
153 
154 template <class E, typename Container>
155 void test_eigen_tensor_variable(Container g, const E& eigen_data) {
156  typedef typename E::Scalar ScalarType;
158  auto v = g.vars.template create<ScalarType>("data", dims.dimsCur, dims.dimsMax);
159  v.writeWithEigenTensor(eigen_data);
160 
161  // TODO(rhoneyager): change to make a tensor from whatever
162  // the input type is.
163  E check_data(eigen_data.dimensions());
164  v.readWithEigenTensor(check_data);
165 
166  for (ioda::Dimensions_t i = 0; i < dims.numElements; ++i)
167  if (eigen_data.data()[i] != check_data.data()[i]) throw;
168 }
169 
170 /// Run a series of tests on the input group.
172  // Can we make child groups?
173  // Can we nest groups?
174  g.create("Test_group_1");
175  auto g2 = g.create("Test_group_2");
176  g2.create("Child 1");
177 
178  // Can we check for group existence?
179  if (!g.exists("Test_group_1")) throw;
180  // Can we verify that nested groups exist?
181  if (!g.exists("Test_group_2/Child 1")) throw;
182 
183  // Can we list groups?
184  auto g_list = g.list();
185  if (g_list.size() != 2) throw;
186  // Can we list another way?
187  auto g_list2 = g.listObjects();
188  if (g_list2.empty()) throw;
189 
190  // Can we open groups?
191  auto g3 = g2.open("Child 1");
192  // Can we open nested groups?
193  auto g4 = g.open("Test_group_2/Child 1");
194 
195  // Attribute tests
196  auto gatt = g.create("Attribute Tests");
197 
198  // Let's template these tests and run them in separate groups to prevent name clashes.
199  test_attribute_functions<double>(gatt.create("double_single"), {3.14159}, {1});
200  test_attribute_functions<double>(gatt.create("double_vector"), {0.1, 0.2, 0.3, 0.4}, {4});
201  test_attribute_functions<double>(gatt.create("double_array_2x3"), {1.2, 2.4, 3.6, 4.8, 5.9, 6.3}, {2, 3});
202  test_attribute_functions<float>(gatt.create("float_array_2x3"), {1.1f, 2.2f, 3.3f, 4.4f, 5.5f, 6.6f},
203  {2, 3});
204  // test_attribute_functions<int8_t>(gatt.create("int8_t_3x2"), { -1, 1, -2, 2, -3, 3 }, { 3,2 });
205  // test_attribute_functions<uint8_t>(gatt.create("uint8_t_3x2"), { 1, 1, 2, 2, 3, 3 }, { 3,2 });
206  test_attribute_functions<int16_t>(gatt.create("int16_t_2x2"), {1, -4, 9, -16}, {2, 2});
207  test_attribute_functions<uint16_t>(gatt.create("uint16_t_2x2"), {1, 4, 9, 16}, {2, 2});
208  test_attribute_functions<int32_t>(gatt.create("int32_t_2x2"), {1, -4, 9, -16}, {2, 2});
209  test_attribute_functions<uint32_t>(gatt.create("uint32_t_2x2"), {1, 4, 9, 16}, {2, 2});
210  test_attribute_functions<int64_t>(gatt.create("int64_t_2"), {32768, -131072}, {2});
211  test_attribute_functions<uint64_t>(gatt.create("uint64_t_2"), {1073741824, 1099511627776}, {2});
212  test_attribute_functions<long double>(gatt.create("ld_1"), {1}, {1});
213  test_attribute_functions<unsigned long>(gatt.create("ul_1"), {1}, {1});
214  test_attribute_functions<size_t>(gatt.create("size_t"), {1}, {1});
215  // test_attribute_functions<wchar_t>(gatt.create("wchar_t"), {L'A'}, {1});
216  // test_attribute_functions<char16_t>(gatt.create("char16_t"), {u'A'}, {1});
217  // test_attribute_functions<char32_t>(gatt.create("char32_t"), {U'A'}, {1});
218  // test_attribute_functions<signed char>(gatt.create("schar_t"), {'a'}, {1});
219  // test_attribute_functions<unsigned char>(gatt.create("uchar_t"), {'a'}, {1});
220  test_attribute_functions<char>(gatt.create("char_t"), {'a'}, {1});
221 
222  test_attribute_functions<std::string>(gatt.create("string_t"), {"Hi Steve!", "This is a test."}, {2});
223  // BUG: char gets auto-detected as an 8-bit integer type. Need to re-introduce the type-overriding options
224  // when creating, reading and writing attributes.
225  // test_attribute_functions<char>(gatt.create("char_t_2"), { 'a', 'b' }, { 2 });
226  // BUG: Can't make a span of bools!
227  // test_attribute_functions<bool>(gatt.create("bool_t_2"), { true, false }, { 2 });
228 
229  Eigen::ArrayXXi int_array_1(3, 3);
230  int_array_1 << 1, 2, 3, 4, 5, 6, 7, 8, 9;
231  test_eigen_regular_attributes(gatt.create("eigen_ints_3x3"), int_array_1);
232  test_eigen_regular_attributes(gatt.create("eigen_ints_2x3"), int_array_1.block(1, 0, 2, 3));
233  test_eigen_regular_attributes(gatt.create("eigen_ints_1x3_2D"), int_array_1.block(2, 0, 1, 3));
234  test_eigen_regular_attributes(gatt.create("eigen_ints_1x3_scalar"), int_array_1.block(2, 0, 1, 3), false);
235 
236  Eigen::Tensor<int, 3> int_tensor_1(2, 3, 4); // 24 elements in a 2x3x4 tensor.
237  for (int i = 0; i < 2; ++i) {
238  for (int j = 0; j < 3; ++j) {
239  for (int k = 0; k < 4; ++k) {
240  int_tensor_1(i, j, k) = (3 * i) + (2 * j) + k;
241  }
242  }
243  }
244  test_eigen_tensor_attributes(gatt.create("eigen_tensor_ints_2x3x4"), int_tensor_1);
245 
246  // Now let's create some variables.
247  // We can also populate variables with data.
248 
250  params_1.setFillValue<double>(-999);
251  params_1.chunk = true;
252  params_1.compressWithGZIP();
253  auto gvar = g.create("Variable Tests");
254  auto v_double = gvar.vars.create<double>("Double_var", {2, 2}, {2, 2}, params_1);
255  v_double.write<double>({9.8, 9.8, 2.2, 1.6});
256 
257  test_attribute_functions<int16_t>(v_double, {1, -1, 2, 4}, {2, 2});
258 
259  std::vector<double> check_v_double;
260  v_double.read<double>(check_v_double);
261  if (check_v_double.size() != 4) throw;
262  if (check_v_double[0] > 9.9 || check_v_double[0] < 9.7) throw;
263  if (check_v_double[1] > 9.9 || check_v_double[1] < 9.7) throw;
264  if (check_v_double[2] > 2.3 || check_v_double[2] < 2.1) throw;
265  if (check_v_double[3] > 1.7 || check_v_double[3] < 1.5) throw;
266 
267  // Resizable variable tests
269  params_2.setFillValue<double>(-999);
270  params_2.chunk = true;
271  params_2.chunks = {30};
272  auto v_d2 = gvar.vars.create<double>("d2_var", {30}, {90}, params_2);
273  v_d2.write<double>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
274  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30});
275  v_d2.resize({60});
276 
277  // Eigen tests
278 
279  Eigen::MatrixXi mat_int_4x4(4, 4);
280  mat_int_4x4 << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
281  test_eigen_regular_variable(gvar.create("eigen_matrix_ints_4x4"), mat_int_4x4);
282 
283  test_eigen_tensor_variable(gvar.create("eigen_tensor_ints"), int_tensor_1);
284 
285  // Dimension scale tests
286  auto dim_1 = gvar.vars.create<int>("dim_1", {1}, {1});
287  dim_1.setIsDimensionScale("dim_1");
288  auto var_a = gvar.vars.create<int>("var_a_dim_1", {1}, {1});
289  var_a.attachDimensionScale(0, dim_1);
290  if (!var_a.isDimensionScaleAttached(0, dim_1)) throw;
291  var_a.detachDimensionScale(0, dim_1);
292  if (var_a.isDimensionScaleAttached(0, dim_1)) throw;
293 }
294 
295 int main(int argc, char** argv) {
296  using namespace ioda;
297  using namespace std;
298  try {
299  auto f = Engines::constructFromCmdLine(argc, argv, "test-tempates.hdf5");
300 
302 
303  } catch (const std::exception& e) {
305  return 1;
306  }
307  return 0;
308 }
IODA's error system.
Definitions for setting up backends with file and memory I/O.
Interfaces for ioda::Group and related classes.
This class represents attributes, which may be attached to both Variables and Groups.
Definition: Attribute.h:493
Groups are a new implementation of ObsSpaces.
Definition: Group.h:159
virtual Dimensions getDimensions() const
Get Attribute's dimensions.
Definition: Attribute.cpp:35
virtual Attribute_Implementation read(gsl::span< char > data, const Type &in_memory_dataType) const
The fundamental read function. Backends overload this function to implement all read operations.
Definition: Attribute.cpp:75
IODA_DL Group constructFromCmdLine(int argc, char **argv, const std::string &defaultFilename)
This is a wrapper function around the constructBackend function for creating a backend based on comma...
Definition: Factory.cpp:21
bool test_equal(const T &a, const T &b)
void test_group_backend_engine(ioda::Group g)
Run a series of tests on the input group.
void test_eigen_regular_variable(Container g, const E &eigen_data)
void test_eigen_regular_attributes(Container g, const E &eigen_data, bool is2D=true)
int main(int argc, char **argv)
void test_eigen_tensor_variable(Container g, const E &eigen_data)
void test_eigen_tensor_attributes(Container g, const E &eigen_data)
void test_attribute_functions(Container g, std::initializer_list< T > values, std::initializer_list< ioda::Dimensions_t > dimensions)
Dimensions getTensorDimensions(EigenClass &e)
Definition: Eigen_Compat.h:72
IODA_DL void unwind_exception_stack(const std::exception &e, std::ostream &out=std::cerr, int level=0)
Convenience function for unwinding an exception stack.
Definition: Exception.cpp:48
void check_data(const std::string &name, const std::vector< double > &data, const std::vector< double > &exp_data)
Describes the dimensions of an Attribute or Variable.
Definition: Dimensions.h:22
std::vector< Dimensions_t > dimsCur
The dimensions of the data.
Definition: Dimensions.h:23
Dimensions_t numElements
Definition: Dimensions.h:26
std::vector< Dimensions_t > dimsMax
This must always equal dimsCur for Attribute.
Definition: Dimensions.h:24
Used to specify Variable creation-time properties.
Definition: Has_Variables.h:57
std::vector< Dimensions_t > chunks
Manually specify the chunks. Never directly use. Use getChunks(...) instead.
Definition: Has_Variables.h:87
VariableCreationParameters & setFillValue(DataType fill)
Definition: Has_Variables.h:69
bool chunk
Do we chunk this variable? Required for extendible / compressible Variables.
Definition: Has_Variables.h:84