17 #include <gsl/gsl-lite.hpp>
49 template <
class Attribute_Implementation = Attribute>
86 virtual Attribute_Implementation
write(gsl::span<char> data,
const Type&
type);
99 template <
class DataType,
class Marshaller = ioda::Object_Accessor<DataType>,
100 class TypeWrapper = Types::GetType_Wrapper<DataType>>
101 Attribute_Implementation
write(gsl::span<const DataType> data) {
104 auto d = m.serialize(data);
105 write(gsl::make_span<char>(
106 const_cast<char*
>(
reinterpret_cast<const char*
>(d->DataPointers.data())),
107 d->DataPointers.size() *
sizeof(
typename Marshaller::mutable_value_type)),
109 return Attribute_Implementation{
backend_};
127 template <
class DataType,
class Marshaller = ioda::Object_Accessor<DataType>,
128 class TypeWrapper = Types::GetType_Wrapper<DataType>>
129 Attribute_Implementation
write(
const std::vector<DataType>& data) {
130 std::vector<DataType> vd = data;
131 return this->write<DataType>(gsl::make_span(vd));
141 template <
class DataType>
142 Attribute_Implementation
write(std::initializer_list<DataType> data) {
143 std::vector<DataType> v(data);
144 return this->write<DataType>(gsl::make_span(v));
152 template <
class DataType>
153 Attribute_Implementation
write(DataType data) {
156 throw Exception(
"Wrong number of elements. Use a different write() method.",
ioda_Here());
157 return write<DataType>(gsl::make_span<DataType>(&data, 1));
168 template <
class EigenClass>
172 typedef typename EigenClass::Scalar ScalarType;
174 Eigen::Array<ScalarType, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> dout;
175 dout.resize(d.rows(), d.cols());
177 const auto& dconst = dout;
178 auto sp = gsl::make_span(dconst.data(),
static_cast<int>(d.rows() * d.cols()));
180 return write<ScalarType>(sp);
185 static_assert(
false,
"The Eigen headers cannot be found, so this function cannot be used.");
194 template <
class EigenClass>
200 auto sp = (gsl::make_span(d.data(), dims.
numElements));
201 auto res =
write(sp);
208 false,
"The Eigen unsupported/ headers cannot be found, so this function cannot be used.");
228 virtual Attribute_Implementation
read(gsl::span<char> data,
const Type& in_memory_dataType)
const;
249 template <
class DataType,
class Marshaller = ioda::Object_Accessor<DataType>,
250 class TypeWrapper = Types::GetType_Wrapper<DataType>>
251 Attribute_Implementation
read(gsl::span<DataType> data)
const {
253 const size_t numObjects = data.size();
254 if (
getDimensions().numElements != gsl::narrow<ioda::Dimensions_t>(numObjects))
255 throw Exception(
"Size mismatch between underlying object and user-provided data range.",
259 Marshaller m(pointerOwner);
260 auto p = m.prep_deserialize(numObjects);
261 read(gsl::make_span<char>(
262 reinterpret_cast<char*
>(p->DataPointers.data()),
263 p->DataPointers.size() *
sizeof(
typename Marshaller::mutable_value_type)),
265 m.deserialize(p, data);
267 return Attribute_Implementation{
backend_};
279 template <
class DataType>
280 Attribute_Implementation
read(std::vector<DataType>& data)
const {
282 return read<DataType>(gsl::make_span<DataType>(data.data(), data.size()));
291 template <
class DataType>
292 Attribute_Implementation
read(std::valarray<DataType>& data)
const {
294 return read<DataType>(gsl::make_span<DataType>(std::begin(data), std::end(data)));
302 template <
class DataType>
303 Attribute_Implementation
read(DataType& data)
const {
306 throw Exception(
"Wrong number of elements. Use a different read() method.",
ioda_Here());
307 return read<DataType>(gsl::make_span<DataType>(&data, 1));
318 template <
class DataType>
328 template <
class DataType>
331 read<DataType>(gsl::make_span<DataType>(data.data(), data.size()));
346 template <class EigenClass, bool Resize = detail::EigenCompat::CanResize<EigenClass>::value>
350 typedef typename EigenClass::Scalar ScalarType;
354 "This object cannot be resized, but you have specified that a resize is required.");
358 if (dims.dimensionality > 2)
359 throw Exception(
"Dimensionality too high for a regular Eigen read. Use "
360 "Eigen::Tensor reads instead.",
ioda_Here());
362 int nDims[2] = {1, 1};
363 if (dims.dimsCur.size() >= 1) nDims[0] = gsl::narrow<int>(dims.dimsCur[0]);
364 if (dims.dimsCur.size() >= 2) nDims[1] = gsl::narrow<int>(dims.dimsCur[1]);
370 else if (dims.numElements != (
size_t)(res.rows() * res.cols()))
379 Eigen::Array<ScalarType, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> data_in(res.rows(),
382 auto ret = read<ScalarType>(gsl::span<ScalarType>(data_in.data(), dims.numElements));
389 static_assert(
false,
"The Eigen headers cannot be found, so this function cannot be used.");
400 template <
class EigenClass>
407 if (ioda_dims.numElements != eigen_dims.numElements)
410 auto sp = (gsl::make_span(res.data(), eigen_dims.numElements));
417 false,
"The Eigen unsupported/ headers cannot be found, so this function cannot be used.");
422 template <
class EigenClass>
446 template <
class DataType>
450 return isA(templateType);
453 virtual bool isA(
Type lhs)
const;
496 Attribute(std::shared_ptr<detail::Attribute_Backend> b);
Python extensions to ioda::Attribute.
Describe the dimensions of a ioda::Attribute or ioda::Variable.
Convenience functions to work with Eigen objects.
Classes and functions that implement the type system and allow for frontend/backend communication.
Interfaces for ioda::Type and related classes.
Frontend/backend bindings for the type system.
This class represents attributes, which may be attached to both Variables and Groups.
detail::python_bindings::AttributeReadNPArray< Attribute > _py_readNPArray
detail::python_bindings::AttributeWriteSingle< Attribute > _py_writeSingle
detail::python_bindings::AttributeReadVector< Attribute > _py_readVector
detail::python_bindings::AttributeIsA< Attribute > _py_isA
detail::python_bindings::AttributeWriteVector< Attribute > _py_writeVector
detail::python_bindings::AttributeReadSingle< Attribute > _py_readSingle
detail::python_bindings::AttributeWriteNPArray< Attribute > _py_writeNPArray
The ioda exception class.
Represents the "type" (i.e. integer, string, float) of a piece of data.
Attribute backends inherit from this.
virtual ~Attribute_Backend()
Base class for Attributes.
Attribute_Implementation read(std::valarray< DataType > &data) const
Valarray read convenience function.
virtual ~Attribute_Base()
std::vector< DataType > readAsVector() const
Read into a new vector. Python convenience function.
Attribute_Implementation read(gsl::span< DataType > data) const
Read data.
Attribute_Implementation read(std::vector< DataType > &data) const
Vector read convenience function.
Attribute_Implementation writeWithEigenTensor(const EigenClass &d)
Write an Eigen Tensor-like object.
virtual Dimensions getDimensions() const
Get Attribute's dimensions.
bool isA() const
Convenience function to check an Attribute's storage type.
DataType read() const
Read a single value (convenience function).
std::shared_ptr< Attribute_Backend > backend_
Using an opaque object to implement the backend.
virtual Attribute_Implementation write(gsl::span< char > data, const Type &type)
The fundamental write function. Backends overload this function to implement all write operations.
Attribute_Implementation readWithEigenRegular(EigenClass &res) const
Read data into an Eigen::Array, Eigen::Matrix, Eigen::Map, etc.
bool _py_isA2(BasicTypes dataType)
Attribute_Base(std::shared_ptr< Attribute_Backend >)
Attribute_Implementation read(DataType &data) const
Read into a single value (convenience function).
virtual Type getType() const
Get Attribute type.
Attribute_Implementation write(std::initializer_list< DataType > data)
Write data.
virtual detail::Type_Provider * getTypeProvider() const
Query the backend and get the type provider.
Attribute_Implementation write(DataType data)
Write a datum.
Attribute_Implementation write(const std::vector< DataType > &data)
Write data.
Attribute_Implementation readWithEigenTensor(EigenClass &res) const
Read data into an Eigen::Array, Eigen::Matrix, Eigen::Map, etc.
bool isA(BasicTypes dataType)
Python compatability function.
Type type() const
Get Attribute type.
EigenClass _readWithEigenRegular_python() const
Attribute_Implementation writeWithEigenRegular(const EigenClass &d)
Write an Eigen object (a Matrix, an Array, a Block, a Map).
Attribute_Implementation write(gsl::span< const DataType > data)
Write data.
Backends implement type providers in conjunction with Attributes, Has_Attributes, Variables and Has_V...
virtual PointerOwner getReturnedPointerOwner() const
When a pointer is passed from the backend to the frontend, who has to free it?
Variable backends inherit from this.
Common preprocessor definitions used throughout IODA.
#define IODA_DL
A preprocessor tag that indicates that a symbol is to be exported/imported.
Type GetType(gsl::not_null< const ::ioda::detail::Type_Provider * > t, std::initializer_list< Dimensions_t > Adims={}, typename std::enable_if<!is_string< DataType >::value >::type *=0)
For fundamental, non-string types.
PointerOwner
Who owns (and should free) pointers passed across the frontend / backend interface?
::std::is_base_of< ResizeableBase, EigenClass > CanResize
Dimensions getTensorDimensions(EigenClass &e)
typename ::std::enable_if< CanResize< EigenClass >::value >::type DoEigenResize(EigenClass &e, ::Eigen::Index rows, ::Eigen::Index cols)
Describes the dimensions of an Attribute or Variable.
static Type GetType(gsl::not_null< const ::ioda::detail::Type_Provider * > t)