IODA
Attribute.h
Go to the documentation of this file.
1 #pragma once
2 /*
3  * (C) Copyright 2020-2021 UCAR
4  *
5  * This software is licensed under the terms of the Apache Licence Version 2.0
6  * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
7  */
8 /*! \defgroup ioda_cxx_attribute Attributes and Has_Attributes
9  * \brief Ancillary data attached to variables and groups.
10  * \ingroup ioda_cxx_api
11  *
12  * @{
13  * \file Attribute.h
14  * \brief @link ioda_cxx_attribute Interfaces @endlink for ioda::Attribute and related classes.
15  */
16 #include <functional>
17 #include <gsl/gsl-lite.hpp>
18 #include <iostream>
19 #include <memory>
20 #include <string>
21 #include <valarray>
22 #include <vector>
23 
24 #include "ioda/Exception.h"
25 #include "ioda/Misc/Dimensions.h"
26 #include "ioda/Misc/Eigen_Compat.h"
27 #include "ioda/Python/Att_ext.h"
28 #include "ioda/Types/Marshalling.h"
29 #include "ioda/Types/Type.h"
31 #include "ioda/defs.h"
32 
33 namespace ioda {
34 class Attribute;
35 
36 namespace detail {
37 class Attribute_Backend;
38 class Variable_Backend;
39 
40 /// \brief Base class for Attributes
41 /// \ingroup ioda_cxx_attribute
42 ///
43 /// \details You might wonder why we have this class
44 /// as a template. This is because we are using
45 /// a bit of compile-time template polymorphism to return
46 /// Attribute objects from base classes before Attribute is fully declared.
47 /// This is a variation of the (Curiously Recurring Template
48 /// Pattern)[https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern].
49 template <class Attribute_Implementation = Attribute>
51 protected:
52  /// Using an opaque object to implement the backend.
53  std::shared_ptr<Attribute_Backend> backend_;
54 
55  // Variable_Backend's derived classes do occasionally need access to the Attribute_Backend object.
56  friend class Variable_Backend;
57 
58  /// @name General Functions
59  /// @{
60 
61  Attribute_Base(std::shared_ptr<Attribute_Backend>);
62 
63 public:
64  virtual ~Attribute_Base();
65 
66  /// @}
67 
68  /// @name Writing Data
69  /// \note Writing metadata is an all-or-nothing-process, unlike writing
70  /// segments of data to a variable.
71  /// \note Dimensions are fixed. Attribute are not resizable.
72  /// @{
73  ///
74 
75  /// \brief The fundamental write function. Backends overload this function to implement all write
76  /// operations.
77  ///
78  /// \details This function writes a span of bytes (characters) to the backend attribute storage.
79  /// No type conversions take place here (see the templated conversion function, below).
80  ///
81  /// \param data is a span of data.
82  /// \param in_memory_datatype is an opaque (backend-level) object that describes the placement of
83  /// the data in memory. Usually ignorable - needed for complex data structures.
84  /// \throws jedi::xError if data has the wrong size.
85  /// \returns The attribute (for chaining).
86  virtual Attribute_Implementation write(gsl::span<char> data, const Type& type);
87 
88  /// \brief Write data.
89  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
90  /// \tparam Marshaller is the class that serializes the data type into something that the backend
91  /// library can use.
92  /// \tparam TypeWrapper is a helper class that creates Type objects for the backend.
93  /// \param data is a gsl::span (a pointer-length pair) that contains the data to be written.
94  /// \param in_memory_dataType is the memory layout needed to parse data's type.
95  /// \returns Another instance of this Attribute. Used for operation chaining.
96  /// \throws jedi::xError if data.size() does not match getDimensions().numElements.
97  /// \see gsl::span for details of how to make a span.
98  /// \see gsl::make_span
99  template <class DataType, class Marshaller = ioda::Object_Accessor<DataType>,
100  class TypeWrapper = Types::GetType_Wrapper<DataType>>
101  Attribute_Implementation write(gsl::span<const DataType> data) {
102  try {
103  Marshaller m;
104  auto d = m.serialize(data);
105  write(gsl::make_span<char>(
106  const_cast<char*>(reinterpret_cast<const char*>(d->DataPointers.data())),
107  d->DataPointers.size() * sizeof(typename Marshaller::mutable_value_type)),
109  return Attribute_Implementation{backend_};
110  } catch (...) {
111  std::throw_with_nested(Exception(ioda_Here()));
112  }
113  }
114 
115  /// \brief Write data
116  /// \note Normally the gsl::span write is fine. This one exists for easy Python binding.
117  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
118  /// \tparam Marshaller is the class that serializes the data type into something that the backend
119  /// library can use.
120  /// \tparam TypeWrapper is a helper class that creates Type objects for the backend.
121  /// \param data is a std::vector that contains the data to be written.
122  /// \param in_memory_dataType is the memory layout needed to parse data's type.
123  /// \returns Another instance of this Attribute. Used for operation chaining.
124  /// \throws jedi::xError if data.size() does not match getDimensions().numElements.
125  /// \see gsl::span for details of how to make a span.
126  /// \see gsl::make_span for details on how to make a span.
127  template <class DataType, class Marshaller = ioda::Object_Accessor<DataType>,
128  class TypeWrapper = Types::GetType_Wrapper<DataType>>
129  Attribute_Implementation write(const std::vector<DataType>& data) {
130  std::vector<DataType> vd = data;
131  return this->write<DataType>(gsl::make_span(vd));
132  }
133 
134  /// \brief Write data.
135  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
136  /// \param data is an initializer list that contains the data to be written.
137  /// \param in_memory_dataType is the memory layout needed to parse data's type.
138  /// \returns Another instance of this Attribute. Used for operation chaining.
139  /// \throws jedi::xError if data.size() does not match getDimensions().numElements.
140  /// \see gsl::span for details of how to make a span.
141  template <class DataType>
142  Attribute_Implementation write(std::initializer_list<DataType> data) {
143  std::vector<DataType> v(data);
144  return this->write<DataType>(gsl::make_span(v));
145  }
146 
147  /// \brief Write a datum.
148  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
149  /// \param data is the data to be written.
150  /// \returns Another instance of this Attribute. Used for operation chaining.
151  /// \throws jedi::xError if the Attribute dimensions are larger than a single point.
152  template <class DataType> //, class Marshaller = HH::Types::Object_Accessor<DataType> >
153  Attribute_Implementation write(DataType data) {
154  try {
155  if (getDimensions().numElements != 1)
156  throw Exception("Wrong number of elements. Use a different write() method.", ioda_Here());
157  return write<DataType>(gsl::make_span<DataType>(&data, 1));
158  } catch (...) {
159  std::throw_with_nested(Exception(ioda_Here()));
160  }
161  }
162 
163  /// \brief Write an Eigen object (a Matrix, an Array, a Block, a Map).
164  /// \tparam EigenClass is the Eigen object to write.
165  /// \param d is the data to be written.
166  /// \throws jedi::xError on a dimension mismatch.
167  /// \returns the attribute
168  template <class EigenClass>
169  Attribute_Implementation writeWithEigenRegular(const EigenClass& d) {
170 #if 1 //__has_include("Eigen/Dense")
171  try {
172  typedef typename EigenClass::Scalar ScalarType;
173  // If d is already in Row Major form, then this is optimized out.
174  Eigen::Array<ScalarType, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> dout;
175  dout.resize(d.rows(), d.cols());
176  dout = d;
177  const auto& dconst = dout; // To make some compilers happy.
178  auto sp = gsl::make_span(dconst.data(), static_cast<int>(d.rows() * d.cols()));
179 
180  return write<ScalarType>(sp);
181  } catch (...) {
182  std::throw_with_nested(Exception(ioda_Here()));
183  }
184 #else
185  static_assert(false, "The Eigen headers cannot be found, so this function cannot be used.");
186 #endif
187  }
188 
189  /// \brief Write an Eigen Tensor-like object
190  /// \tparam EigenClass is the Eigen tensor to write.
191  /// \param d is the data to be written.
192  /// \throws jedi::xError on a dimension mismatch.
193  /// \returns the attribute
194  template <class EigenClass>
195  Attribute_Implementation writeWithEigenTensor(const EigenClass& d) {
196 #if 1 //__has_include("unsupported/Eigen/CXX11/Tensor")
197  try {
199 
200  auto sp = (gsl::make_span(d.data(), dims.numElements));
201  auto res = write(sp);
202  return res;
203  } catch (...) {
204  std::throw_with_nested(Exception(ioda_Here()));
205  }
206 #else
207  static_assert(
208  false, "The Eigen unsupported/ headers cannot be found, so this function cannot be used.");
209 #endif
210  }
211 
212  /// @}
213  /// @name Reading Data
214  /// @{
215  ///
216 
217  /// \brief The fundamental read function. Backends overload this function to implement all read
218  /// operations.
219  ///
220  /// \details This function reads in a span of characters from the backend attribute storage.
221  /// No type conversions take place here (see the templated conversion function, below).
222  ///
223  /// \param data is a span of data that has length of getStorageSize().
224  /// \param in_memory_datatype is an opaque (backend-level) object that describes the placement of
225  /// the data in memory. Usually ignorable - needed for complex data structures.
226  /// \throws jedi::xError if data has the wrong size.
227  /// \returns The attribute (for chaining).
228  virtual Attribute_Implementation read(gsl::span<char> data, const Type& in_memory_dataType) const;
229 
230  /// \brief Read data.
231  ///
232  /// \details This is a fundamental function that reads a span of characters from backend storage,
233  /// and then performs the appropriate type conversion / deserialization into objects in data.
234  ///
235  /// \tparam DataType is the type if the data to be read. I.e. float, int, int32_t, uint16_t,
236  /// std::string, etc.
237  /// \tparam Marshaller is the class that performs the deserialization operation.
238  /// \tparam TypeWrapper is a helper class that passes Type information to the backend.
239  /// \param data is a pointer-size pair to the data buffer that is filled with the metadata's
240  /// contents. It should be
241  /// pre-sized to accomodate all of the matadata. See getDimensions().numElements. data will be
242  /// filled in row-major order.
243  /// \param in_memory_datatype is an opaque (backend-level) object that describes the placement of
244  /// the data in memory. Usually this does not need to be set to anything other than its default
245  /// value. Kept as a parameter for debugging purposes.
246  /// \returns Another instance of this Attribute. Used for operation chaining.
247  /// \throws jedi::xError if data.size() != getDimensions().numElements.
248  /// \see getDimensions for buffer size information.
249  template <class DataType, class Marshaller = ioda::Object_Accessor<DataType>,
250  class TypeWrapper = Types::GetType_Wrapper<DataType>>
251  Attribute_Implementation read(gsl::span<DataType> data) const {
252  try {
253  const size_t numObjects = data.size();
254  if (getDimensions().numElements != gsl::narrow<ioda::Dimensions_t>(numObjects))
255  throw Exception("Size mismatch between underlying object and user-provided data range.",
256  ioda_Here());
257 
259  Marshaller m(pointerOwner);
260  auto p = m.prep_deserialize(numObjects);
261  read(gsl::make_span<char>(
262  reinterpret_cast<char*>(p->DataPointers.data()),
263  p->DataPointers.size() * sizeof(typename Marshaller::mutable_value_type)),
265  m.deserialize(p, data);
266 
267  return Attribute_Implementation{backend_};
268  } catch (...) {
269  std::throw_with_nested(Exception(ioda_Here()));
270  }
271  }
272 
273  /// \brief Vector read convenience function.
274  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
275  /// \param data is a vector acting as a data buffer that is filled with the metadata's contents.
276  /// It gets resized as needed.
277  /// \returns Another instance of this Attribute. Used for operation chaining.
278  /// \note data will be stored in row-major order.
279  template <class DataType>
280  Attribute_Implementation read(std::vector<DataType>& data) const {
281  data.resize(getDimensions().numElements);
282  return read<DataType>(gsl::make_span<DataType>(data.data(), data.size()));
283  }
284 
285  /// \brief Valarray read convenience function.
286  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
287  /// \param data is a valarray acting as a data buffer that is filled with the metadata's contents.
288  /// It gets resized as needed.
289  /// \returns Another instance of this Attribute. Used for operation chaining.
290  /// \note data will be stored in row-major order.
291  template <class DataType>
292  Attribute_Implementation read(std::valarray<DataType>& data) const {
293  data.resize(getDimensions().numElements);
294  return read<DataType>(gsl::make_span<DataType>(std::begin(data), std::end(data)));
295  }
296 
297  /// \brief Read into a single value (convenience function).
298  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
299  /// \param data is where the datum is read to.
300  /// \returns Another instance of this Attribute. Used for operation chaining.
301  /// \throws jedi::xError if the underlying data have multiple elements.
302  template <class DataType>
303  Attribute_Implementation read(DataType& data) const {
304  try {
305  if (getDimensions().numElements != 1)
306  throw Exception("Wrong number of elements. Use a different read() method.", ioda_Here());
307  return read<DataType>(gsl::make_span<DataType>(&data, 1));
308  } catch (...) {
309  std::throw_with_nested(Exception(ioda_Here()));
310  }
311  }
312 
313  /// \brief Read a single value (convenience function).
314  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
315  /// \returns A datum of type DataType.
316  /// \throws jedi::xError if the underlying data have size greater than 1.
317  /// \note The Python function is read_datum_*
318  template <class DataType>
319  DataType read() const {
320  DataType ret;
321  read<DataType>(ret);
322  return ret;
323  }
324 
325  /// \brief Read into a new vector. Python convenience function.
326  /// \tparam DataType is the type of the data.
327  /// \note The Python function is read_list_*
328  template <class DataType>
329  std::vector<DataType> readAsVector() const {
330  std::vector<DataType> data(getDimensions().numElements);
331  read<DataType>(gsl::make_span<DataType>(data.data(), data.size()));
332  return data;
333  }
334 
335  /// \brief Read data into an Eigen::Array, Eigen::Matrix, Eigen::Map, etc.
336  /// \tparam EigenClass is a template pointing to the Eigen object.
337  /// This template must provide the EigenClass::Scalar typedef.
338  /// \tparam Resize indicates whether the Eigen object should be resized
339  /// if there is a dimension mismatch. Not all Eigen objects can be resized.
340  /// \param res is the Eigen object.
341  /// \returns Another instance of this Attribute. Used for operation chaining.
342  /// \throws jedi::xError if the attribute's dimensionality is
343  /// too high.
344  /// \throws jedi::xError if resize = false and there is a dimension mismatch.
345  /// \note When reading in a 1-D object, the data are read as a column vector.
346  template <class EigenClass, bool Resize = detail::EigenCompat::CanResize<EigenClass>::value>
347  Attribute_Implementation readWithEigenRegular(EigenClass& res) const {
348 #if 1 //__has_include("Eigen/Dense")
349  try {
350  typedef typename EigenClass::Scalar ScalarType;
351 
352  static_assert(
354  "This object cannot be resized, but you have specified that a resize is required.");
355 
356  // Check that the dimensionality is 1 or 2.
357  const auto dims = getDimensions();
358  if (dims.dimensionality > 2)
359  throw Exception("Dimensionality too high for a regular Eigen read. Use "
360  "Eigen::Tensor reads instead.", ioda_Here());
361 
362  int nDims[2] = {1, 1};
363  if (dims.dimsCur.size() >= 1) nDims[0] = gsl::narrow<int>(dims.dimsCur[0]);
364  if (dims.dimsCur.size() >= 2) nDims[1] = gsl::narrow<int>(dims.dimsCur[1]);
365 
366  // Resize if needed.
367  if (Resize)
369  nDims[1]); // nullop if the size is already correct.
370  else if (dims.numElements != (size_t)(res.rows() * res.cols()))
371  throw Exception("Size mismatch", ioda_Here());
372 
373  // Array copy to preserve row vs column major format.
374  // Should be optimized away by the compiler if unneeded.
375  // Note to the reader: We are reading in the data to a temporary object.
376  // We can size _this_ temporary object however we want.
377  // The temporary is used to swap row / column indices if needed.
378  // It should be optimized away if not needed... making sure this happens is a todo.
379  Eigen::Array<ScalarType, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> data_in(res.rows(),
380  res.cols());
381 
382  auto ret = read<ScalarType>(gsl::span<ScalarType>(data_in.data(), dims.numElements));
383  res = data_in;
384  return ret;
385  } catch (...) {
386  std::throw_with_nested(Exception(ioda_Here()));
387  }
388 #else
389  static_assert(false, "The Eigen headers cannot be found, so this function cannot be used.");
390 #endif
391  }
392 
393  /// \brief Read data into an Eigen::Array, Eigen::Matrix, Eigen::Map, etc.
394  /// \tparam EigenClass is a template pointing to the Eigen object.
395  /// This template must provide the EigenClass::Scalar typedef.
396  /// \param res is the Eigen object.
397  /// \returns Another instance of this Attribute. Used for operation chaining.
398  /// \throws jedi::xError if there is a size mismatch.
399  /// \note When reading in a 1-D object, the data are read as a column vector.
400  template <class EigenClass>
401  Attribute_Implementation readWithEigenTensor(EigenClass& res) const {
402 #if 1 //__has_include("unsupported/Eigen/CXX11/Tensor")
403  try {
404  // Check dimensionality of source and destination
405  const auto ioda_dims = getDimensions();
406  const auto eigen_dims = ioda::detail::EigenCompat::getTensorDimensions(res);
407  if (ioda_dims.numElements != eigen_dims.numElements)
408  throw Exception("Size mismatch for Eigen Tensor-like read.", ioda_Here());
409 
410  auto sp = (gsl::make_span(res.data(), eigen_dims.numElements));
411  return read(sp);
412  } catch (...) {
413  std::throw_with_nested(Exception(ioda_Here()));
414  }
415 #else
416  static_assert(
417  false, "The Eigen unsupported/ headers cannot be found, so this function cannot be used.");
418 #endif
419  }
420 
421  /// \internal Python binding function
422  template <class EigenClass>
423  EigenClass _readWithEigenRegular_python() const {
424  EigenClass data;
425  readWithEigenRegular(data);
426  return data;
427  }
428 
429  /// @}
430  /// @name Type-querying Functions
431  /// @{
432 
433  /// \brief Get Attribute type.
434  virtual Type getType() const;
435  /// \brief Get Attribute type.
436  inline Type type() const { return getType(); }
437 
438  /// Query the backend and get the type provider.
439  virtual detail::Type_Provider* getTypeProvider() const;
440 
441  /// \brief Convenience function to check an Attribute's storage type.
442  /// \tparam DataType is the type of the data. I.e. float, int, int32_t, uint16_t, std::string, etc.
443  /// \returns True if the type matches
444  /// \returns False (0) if the type does not match
445  /// \throws jedi::xError if an error occurred.
446  template <class DataType>
447  bool isA() const {
449 
450  return isA(templateType);
451  }
452  /// Hand-off to the backend to check equivalence
453  virtual bool isA(Type lhs) const;
454 
455  /// Python compatability function
456  inline bool isA(BasicTypes dataType) { return isA(Type(dataType, getTypeProvider())); }
457  /// \internal pybind11
458  inline bool _py_isA2(BasicTypes dataType) { return isA(dataType); }
459 
460  /// @}
461  /// @name Data Space-Querying Functions
462  /// @{
463 
464  // Get an Attribute's dataspace
465  // virtual Encapsulated_Handle getSpace() const;
466 
467  /// \brief Get Attribute's dimensions.
468  virtual Dimensions getDimensions() const;
469 
470  /// @}
471 };
472 
473 // extern template class Attribute_Base<>;
474 } // namespace detail
475 
476 /** \brief This class represents attributes, which may be attached to both Variables and Groups.
477  * \ingroup ioda_cxx_attribute
478  *
479  * Attributes are used to store small objects that get tagged to a Variable or a
480  * Group to provide context to users and other programs. Attributes include
481  * descriptions, units, alternate names, dimensions, and similar constructs.
482  * Attributes may have different types (ints, floats, datetimes, strings, etc.),
483  * and may be 0- or 1-dimensional.
484  *
485  * We can open an Attribute from a Has_Attribute object, which is a member of Groups and
486  * Variables.
487  *
488  * \note Multidimensional attributes are supported by some of the underlying backends,
489  * like HDF5, but are incompatible with the NetCDF file format.
490  * \see Has_Attribute for the class that can create and open new Attribute objects.
491  * \throws jedi::xError on all exceptions.
492  **/
494 public:
495  Attribute();
496  Attribute(std::shared_ptr<detail::Attribute_Backend> b);
497  Attribute(const Attribute&);
498  Attribute& operator=(const Attribute&);
499  virtual ~Attribute();
500 
501  /// @name Python compatability objects
502  /// @{
503 
505 
509 
513 
514  /// @}
515 };
516 
517 namespace detail {
518 /// \brief Attribute backends inherit from this.
520 public:
522 
523 protected:
525 };
526 } // namespace detail
527 } // namespace ioda
528 
529 /// @} // End Doxygen block
Python extensions to ioda::Attribute.
Describe the dimensions of a ioda::Attribute or ioda::Variable.
Convenience functions to work with Eigen objects.
IODA's error system.
Classes and functions that implement the type system and allow for frontend/backend communication.
Interfaces for ioda::Type and related classes.
Frontend/backend bindings for the type system.
This class represents attributes, which may be attached to both Variables and Groups.
Definition: Attribute.h:493
virtual ~Attribute()
detail::python_bindings::AttributeReadNPArray< Attribute > _py_readNPArray
Definition: Attribute.h:508
detail::python_bindings::AttributeWriteSingle< Attribute > _py_writeSingle
Definition: Attribute.h:510
detail::python_bindings::AttributeReadVector< Attribute > _py_readVector
Definition: Attribute.h:507
detail::python_bindings::AttributeIsA< Attribute > _py_isA
Definition: Attribute.h:504
detail::python_bindings::AttributeWriteVector< Attribute > _py_writeVector
Definition: Attribute.h:511
detail::python_bindings::AttributeReadSingle< Attribute > _py_readSingle
Definition: Attribute.h:506
detail::python_bindings::AttributeWriteNPArray< Attribute > _py_writeNPArray
Definition: Attribute.h:512
The ioda exception class.
Definition: Exception.h:54
Represents the "type" (i.e. integer, string, float) of a piece of data.
Definition: Type.h:123
Attribute backends inherit from this.
Definition: Attribute.h:519
Base class for Attributes.
Definition: Attribute.h:50
Attribute_Implementation read(std::valarray< DataType > &data) const
Valarray read convenience function.
Definition: Attribute.h:292
std::vector< DataType > readAsVector() const
Read into a new vector. Python convenience function.
Definition: Attribute.h:329
Attribute_Implementation read(gsl::span< DataType > data) const
Read data.
Definition: Attribute.h:251
Attribute_Implementation read(std::vector< DataType > &data) const
Vector read convenience function.
Definition: Attribute.h:280
Attribute_Implementation writeWithEigenTensor(const EigenClass &d)
Write an Eigen Tensor-like object.
Definition: Attribute.h:195
virtual Dimensions getDimensions() const
Get Attribute's dimensions.
Definition: Attribute.cpp:35
bool isA() const
Convenience function to check an Attribute's storage type.
Definition: Attribute.h:447
DataType read() const
Read a single value (convenience function).
Definition: Attribute.h:319
std::shared_ptr< Attribute_Backend > backend_
Using an opaque object to implement the backend.
Definition: Attribute.h:53
virtual Attribute_Implementation write(gsl::span< char > data, const Type &type)
The fundamental write function. Backends overload this function to implement all write operations.
Definition: Attribute.cpp:65
Attribute_Implementation readWithEigenRegular(EigenClass &res) const
Read data into an Eigen::Array, Eigen::Matrix, Eigen::Map, etc.
Definition: Attribute.h:347
bool _py_isA2(BasicTypes dataType)
Definition: Attribute.h:458
Attribute_Base(std::shared_ptr< Attribute_Backend >)
Definition: Attribute.cpp:17
Attribute_Implementation read(DataType &data) const
Read into a single value (convenience function).
Definition: Attribute.h:303
virtual Type getType() const
Get Attribute type.
Definition: Attribute.cpp:25
Attribute_Implementation write(std::initializer_list< DataType > data)
Write data.
Definition: Attribute.h:142
virtual detail::Type_Provider * getTypeProvider() const
Query the backend and get the type provider.
Definition: Attribute.cpp:55
Attribute_Implementation write(DataType data)
Write a datum.
Definition: Attribute.h:153
Attribute_Implementation write(const std::vector< DataType > &data)
Write data.
Definition: Attribute.h:129
Attribute_Implementation readWithEigenTensor(EigenClass &res) const
Read data into an Eigen::Array, Eigen::Matrix, Eigen::Map, etc.
Definition: Attribute.h:401
bool isA(BasicTypes dataType)
Python compatability function.
Definition: Attribute.h:456
Type type() const
Get Attribute type.
Definition: Attribute.h:436
EigenClass _readWithEigenRegular_python() const
Definition: Attribute.h:423
Attribute_Implementation writeWithEigenRegular(const EigenClass &d)
Write an Eigen object (a Matrix, an Array, a Block, a Map).
Definition: Attribute.h:169
Attribute_Implementation write(gsl::span< const DataType > data)
Write data.
Definition: Attribute.h:101
Backends implement type providers in conjunction with Attributes, Has_Attributes, Variables and Has_V...
Definition: Type_Provider.h:36
virtual PointerOwner getReturnedPointerOwner() const
When a pointer is passed from the backend to the frontend, who has to free it?
Variable backends inherit from this.
Definition: Variable.h:710
Common preprocessor definitions used throughout IODA.
#define IODA_DL
A preprocessor tag that indicates that a symbol is to be exported/imported.
Definition: defs.h:110
Type GetType(gsl::not_null< const ::ioda::detail::Type_Provider * > t, std::initializer_list< Dimensions_t > Adims={}, typename std::enable_if<!is_string< DataType >::value >::type *=0)
For fundamental, non-string types.
Definition: Type.h:189
PointerOwner
Who owns (and should free) pointers passed across the frontend / backend interface?
Definition: Type_Provider.h:27
::std::is_base_of< ResizeableBase, EigenClass > CanResize
Definition: Eigen_Compat.h:54
Dimensions getTensorDimensions(EigenClass &e)
Definition: Eigen_Compat.h:72
typename ::std::enable_if< CanResize< EigenClass >::value >::type DoEigenResize(EigenClass &e, ::Eigen::Index rows, ::Eigen::Index cols)
Definition: Eigen_Compat.h:57
BasicTypes
Definition: Type.h:37
#define ioda_Here()
Describes the dimensions of an Attribute or Variable.
Definition: Dimensions.h:22
Dimensions_t numElements
Definition: Dimensions.h:26
static Type GetType(gsl::not_null< const ::ioda::detail::Type_Provider * > t)
Definition: Type.h:280