IODA
03-VariablesIntro.cpp
Go to the documentation of this file.
1 /*
2  * (C) Copyright 2020-2021 UCAR
3  *
4  * This software is licensed under the terms of the Apache Licence Version 2.0
5  * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
6  */
7 /*! \addtogroup ioda_cxx_ex
8  *
9  * @{
10  *
11  * \defgroup ioda_cxx_ex_3 Ex 3: Introduction to Variables
12  * \brief Basic usage of Variables
13  * \see 03-VariablesIntro.cpp for comments and the walkthrough.
14  *
15  * @{
16  *
17  * \file 03-VariablesIntro.cpp
18  * \brief Basic usage of Variables
19  *
20  * Variables store data. They are generally treated as an extension of
21  * Attributes; everything an Attribute can do, a Variable can do better.
22  * Variables are resizable, chunkable and compressible. They fully support
23  * multidimensional data. They may have attached
24  * *dimension scales*, which gives their dimensions meaning. Variables
25  * may be read and written to using Eigen objects, xTensors, and other
26  * user-friendly classes for data manipulation (i.e. replacement ObsDataVectors).
27  *
28  * This example creates an HDF5 file, "Example-03.hdf5" using the HDF5 backend.
29  * This file may be viewed with the "h5dump" of "ncdump" commands. You can
30  * also use "hdfview" if you want a gui.
31  *
32  * \author Ryan Honeyager (honeyage@ucar.edu)
33  **/
34 
35 #include <hdf5.h> // Turn off hdf5 auto-error handling. Needed for the example.
36 
37 #include <array> // Arrays are fixed-length vectors.
38 #include <iostream> // We want I/O.
39 #include <string> // We want strings
40 #include <valarray> // Like a vector, but can also do basic element-wise math.
41 #include <vector> // We want vectors
42 
43 #include "Eigen/Dense" // Eigen Arrays and Matrices
44 #include "ioda/Engines/Factory.h" // Used to kickstart the Group engine.
45 #include "ioda/Exception.h" // Exceptions and debugging
46 #include "ioda/Group.h" // Groups have attributes.
47 #include "unsupported/Eigen/CXX11/Tensor" // Eigen Tensors
48 
49 int main(int argc, char** argv) {
50  using namespace ioda; // All of the ioda functions are here.
51  using std::cerr;
52  using std::endl;
53  using std::string;
54  using std::vector;
55  try {
56  // We want to open a new file, backed by HDF5.
57  // We open this file as a root-level Group.
58  Group g = Engines::constructFromCmdLine(argc, argv, "Example-03.hdf5");
59 
60  // You can access all the variables in a group using the ".vars" member object.
61  // i.e. g.vars;
62 
63  // ".vars" is an instance of the "Has_Variables" class. This class is defined
64  // in "include/ioda/Variables/Has_Variables.h". Like with Has_Attributes, the
65  // definition is slightly convoluted, but the key point to remember is that
66  // everything in Has_Varables_Base is available to Has_Variables.
67  // Also remember to check the Doxygen documentation if you get confused.
68 
69  // Let's make some Variables.
70 
71  // The most basic creation function is .create<Type>(name, {dimensions}). Same as with creating
72  // an attribute.
73  ioda::Variable intvar1 = g.vars.create<int>("var-1", {2, 3});
74  // The above creates a 2x3 variable that contains integers.
75  // * First difference from attributes: multidimensional data is fully supported. You can create
76  // points, 1-D, 2-D, 3-D, ..., n-dimensional data.
77 
78  // Writing a small amount of data is also easy.
79  intvar1.write<int>({1, 2, 3, 4, 5, 6});
80  // Just like with Attributes, you can use initializer lists and spans to write data.
81  // Unlike with attributes, there is no ".add" function, so you always have to
82  // use ".create" and ".write". This is deliberate, because variable creation can become much
83  // more complicated than attribute creation.
84 
85  // However, you can still chain operations:
86  g.vars.create<float>("var-2", {2, 3, 4}).write<float>({1.1f, 2.2f, 3.14159f, 4, 5, 6,
87  7, 8, 9, 10, 11.5f, 12.6f,
88  13, 14, 15, 16, 17, 18,
89  19, 20, 21, 22, 23, 24});
90 
91  // * The second difference: variables can be resized.
92  // The create function also can take a few other parameters, such as maximum dimensions,
93  // attachable dimension scales, and information about chunking and compression.
94  // We won't cover this in this tutorial, but full details are available in Tutorial 6
95  // (Variable Creation Properties).
96  // In that tutorial, you'll learn to create variables using expressions like these:
97  {
99  p1.chunk = true;
100  p1.chunks = {200, 3}; // "Chunk" every 600 elements together.
101  p1.setFillValue<int>(-999);
102  p1.compressWithGZIP();
103  // Make a 200x3 variable, that can be expanded up to have 2000x3 dimensions,
104  // with a fill value of -999, that is compressed with GZIP.
105  g.vars.create<int>("var-3", {200, 3}, {2000, 3}, p1);
106  }
107 
108  // Basic writing of data.
109 
110  // The vector, valarray and span constructors work the same way as with Attributes.
111  // We can make a span from std::vector, std::array, std::valarray quite trivially.
112  // We can also make a span from a C-style array, or from std::begin, std::end,
113  // or from iterators.
114  std::vector<int> v_data_4{1, 2, 3, 4, 5, 6, 7, 8, 9}; // A vector of data.
115  std::array<int, 6> a_data_5{1, 2, 3, 4, 5, 6}; // A fixed-length array of data.
116  std::valarray<int> va_data_6{1, 2, 3, 4}; // A basic math-supporting vector.
117  const size_t sz_ca_data_7 = 7;
118  const int ca_data_7[sz_ca_data_7]
119  = {1, 2, 3, 4, 5, 6, 7}; // NOLINT: (Humans should ignore this comment)
120 
121  g.vars.create<int>("var-4", {gsl::narrow<ioda::Dimensions_t>(v_data_4.size())})
122  .write<int>(gsl::make_span(v_data_4));
123  g.vars.create<int>("var-5", {gsl::narrow<ioda::Dimensions_t>(a_data_5.size())})
124  .write<int>(gsl::make_span(a_data_5));
125  g.vars.create<int>("var-6", {gsl::narrow<ioda::Dimensions_t>(va_data_6.size())})
126  .write<int>(gsl::make_span(std::begin(va_data_6), std::end(va_data_6)));
127  // A variable in a Group.
128  g.vars.create<int>("exgroup/var-7", {sz_ca_data_7})
129  .write<int>(gsl::make_span(ca_data_7, sz_ca_data_7));
130  // You should notice that the creation and writing are a bit "inelegant" in that we seem to
131  // specify the size twice, when creating and when writing the data. There are two
132  // reasons for this:
133  // 1) We aren't specifying the _size_ when creating the variable. We are
134  // specifying the _dimensions_.
135  // These examples all happen to be 1-D data. Vectors, arrays, etc. all
136  // lack an understanding of data dimensions.
137  // 2) The amount of data being written is very small. Most of the time, your data
138  // will be much larger, you might want to separate the variable creation / writing
139  // logic, and you might not even need to read or write the _entire_ variable.
140 
141  // Note: you can specify nested paths using slashes. "exgroup/var-7" refers to a
142  // variable ("var-7") that is in a group ("exgroup"). The following three lines
143  // are thus equivalent.
144  Expects(g.exists("exgroup"));
145  Expects(g.open("exgroup").vars.exists("var-7"));
146  Expects(g.vars.exists("exgroup/var-7"));
147 
148  // What happens if you write the wrong type of data to a variable?
149  // ioda-engines assumes that this is an error, and throws.
150  try {
151  auto bad_1 = g.vars.create<int>("bad-int-1", {1});
152  bad_1.write<float>(std::vector<float>{2.2f});
153  } catch (std::exception) {
154  }
155 
156  // Writing Eigen objects
157 
158  // Eigen (http://eigen.tuxfamily.org/) is a is a high-level C++ library of template headers
159  // for linear algebra, matrix and vector operations, geometrical transformations, numerical
160  // solvers and related algorithms.
161  // You can use it to read data from / write data into ioda while preserving the data's
162  // dimensions. You can use Eigen's containers to **do math** in a natural manner, without
163  // constantly iterating over array indices. We support i/o with all Eigen objects.
164 
165  // Here is a 30x30 block of integers.
166  const int num_i = 30, num_j = 30;
167  Eigen::ArrayXXi x(num_i, num_j);
168  // Let's set some initial data.
169  for (int i = 0; i < num_i; ++i)
170  for (int j = 0; j < num_j; ++j) x(i, j) = j + 3 * i;
171  // To write this data, we have a special function called .writeWithEigenRegular.
172  ioda::Variable ioda_x = g.vars.create<int>("var-x", {num_i, num_j});
173  ioda_x.writeWithEigenRegular(x);
174  // The .writeWithEigenRegular function is used to write Eigen Arrays, Matrices, Blocks, etc.
175  // There is also a .writeWithEigenTensor function that can write Eigen::Tensor objects.
176 
177  // Doing math with Eigen:
178 
179  Eigen::ArrayXXi y(num_i, num_j); // Define another variable, y.
180  for (int i = 0; i < num_i; ++i)
181  for (int j = 0; j < num_j; ++j) y(i, j) = (i * i) - j;
182 
183  // We've defined x and y. How about z = 2*y - x?
184  Eigen::ArrayXXi z = (2 * y) - x;
185  // Literally, it's that simple.
186 
187  g.vars.create<int>("var-y", {num_i, num_j}).writeWithEigenRegular(y);
188  g.vars.create<int>("var-z", {num_i, num_j}).writeWithEigenRegular(z);
189 
190  // Eigen::Tensors are a multidimensional storage container.
191  Eigen::Tensor<int, 3, Eigen::RowMajor> data_4d(3, 3, 3);
192  for (int i = 0; i < 3; ++i)
193  for (int j = 0; j < 3; ++j)
194  for (int k = 0; k < 3; ++k) data_4d(i, j, k) = i + j - k;
195  g.vars.create<int>("var-4d", {3, 3, 3}).writeWithEigenTensor(data_4d);
196 
197  // For more information regarding how to use Eigen properly, see the tutorial at
198  // http://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html
199 
200  // Listing, opening and querying variables
201 
202  // Listing
203  // This is easy. We return a vector instead of a set because one day we might care
204  // about ordering.
205  std::vector<std::string> varList = g.vars.list();
206  if (varList.size() != 11)
207  throw ioda::Exception("Unexpected variable count.", ioda_Here())
208  .add("Expected", 11)
209  .add("Actual", varList.size());
210 
211  // Checking variable existence and removing.
212  if (!g.vars.exists("var-2"))
213  throw ioda::Exception("Variable var-2 does not exist.", ioda_Here());
214  g.vars.create<int>("removable-int-1", {1});
215  g.vars.remove("removable-int-1");
216 
217  // Opening
218  // As with attributes, we can use the .open() function, or use square brackets.
219  ioda::Variable y1 = g.vars["var-y"];
220  ioda::Variable z1 = g.vars.open("var-z");
221 
222  // You should check that a variable exists before opening it.
223  // If the variable does not exist, ioda-engines will throw an error.
224  try {
225  // Note: Using an HDF5-specific function here because we are deliberately triggering an error.
226  H5Eset_auto(H5E_DEFAULT, NULL, NULL); // Turn off HDF5 automatic error handling.
227  ioda::Variable z2;
228  z2 = g.vars.open("var-z-2");
229  } catch (std::exception) { // This is expected.
230  }
231 
232  // Get dimensions
233  // Returns a ioda::Dimensions structure. This structure is shared with Variables.
234  ioda::Dimensions y1_dims = y1.getDimensions();
235  // Dimensionality refers to the number of dimensions the attribute has.
236  Expects(y1_dims.dimensionality == 2);
237  // dimsCur is the current dimensions.
238  Expects(y1_dims.dimsCur[0] == num_i);
239  Expects(y1_dims.dimsCur[1] == num_j);
240  // dimsMax are the maximum dimensions.
241  // Many variables are resizable, in which case dimsMax's elements will not equal those of
242  // dimsCur. We will discuss creating resizable and chunked variables in a later
243  // tutorial.
244  Expects(y1_dims.dimsMax[0] == num_i);
245 
246  // Check type
247  // With the frontend / backend pattern, it is really hard to "get" the type into any
248  // form that C++ can intrinsically understand.
249  // It's much better to check if the Attribute's type matches a type in C++.
250  Expects(y1.isA<int>() == true);
251 
252  // Reading an entire variable
253 
254  // Into a vector
255  std::vector<int> v_data_4_check;
256  g.vars["var-4"].read<int>(v_data_4_check);
257  Expects(v_data_4_check[3] == 4);
258 
259  // Into a valarray
260  std::valarray<int> va_data_4_check;
261  g.vars["var-4"].read<int>(va_data_4_check);
262  Expects(va_data_4_check[3] == 4);
263 
264  // Into a span
265  std::array<int, 6> check_a_data_5; // NOLINT: (Humans should ignore this comment.)
266  g.vars["var-5"].read<int>(gsl::make_span(check_a_data_5));
267  Expects(check_a_data_5[3] == 4);
268 
269  // With Eigen
270  Eigen::ArrayXXi y1_check;
271  y1.readWithEigenRegular(y1_check);
272  Expects(y1_check(0, 0) == 0); // i^2 - j
273  Expects(y1_check(2, 1) == 3);
274  Expects(y1_check(1, 2) == -1);
275  Expects(y1_check(2, 2) == 2);
276 
277  ioda::Dimensions v4d_dims = g.vars["var-4d"].getDimensions();
278  Eigen::Tensor<int, 3, Eigen::RowMajor> data_4d_check(v4d_dims.dimsCur[0], v4d_dims.dimsCur[1],
279  v4d_dims.dimsCur[2]);
280  g.vars["var-4d"].readWithEigenTensor(data_4d_check);
281  Expects(data_4d_check(0, 0, 0) == 0); // i + j - k
282  Expects(data_4d_check(1, 0, 0) == 1);
283  Expects(data_4d_check(0, 1, 0) == 1);
284  Expects(data_4d_check(0, 0, 1) == -1);
285 
286  // If you read data into an object that has the wrong storage type, ioda-engines complains.
287  try {
288  std::vector<double> y1_check_bad;
289  y1.read<double>(y1_check_bad); // This will fail
290  } catch (...) {
291  // Silently catch in this example
292  }
293 
294  } catch (const std::exception& e) {
296  return 1;
297  }
298  return 0;
299 }
300 
301 /// @}
302 /// @}
IODA's error system.
Definitions for setting up backends with file and memory I/O.
Interfaces for ioda::Group and related classes.
The ioda exception class.
Definition: Exception.h:54
Exception & add(const std::string &key, const T value)
Add a key-value pair to the error message.
Definition: Exception.h:75
Groups are a new implementation of ObsSpaces.
Definition: Group.h:159
Variables store data!
Definition: Variable.h:680
Variable_Implementation writeWithEigenRegular(const EigenClass &d, const Selection &mem_selection=Selection::all, const Selection &file_selection=Selection::all)
Write an Eigen object (a Matrix, an Array, a Block, a Map).
Definition: Variable.h:361
bool isA() const
Convenience function to check a Variable's storage type.
Definition: Variable.h:99
virtual Dimensions getDimensions() const
Definition: Variable.cpp:160
virtual Variable read(gsl::span< char > data, const Type &in_memory_dataType, const Selection &mem_selection=Selection::all, const Selection &file_selection=Selection::all) const
Read the Variable - as char array. Ordering is row-major.
Definition: Variable.cpp:330
Variable_Implementation readWithEigenRegular(EigenClass &res, const Selection &mem_selection=Selection::all, const Selection &file_selection=Selection::all) const
Read data into an Eigen::Array, Eigen::Matrix, Eigen::Map, etc.
Definition: Variable.h:551
IODA_DL Group constructFromCmdLine(int argc, char **argv, const std::string &defaultFilename)
This is a wrapper function around the constructBackend function for creating a backend based on comma...
Definition: Factory.cpp:21
int main(int argc, char **argv)
IODA_DL void unwind_exception_stack(const std::exception &e, std::ostream &out=std::cerr, int level=0)
Convenience function for unwinding an exception stack.
Definition: Exception.cpp:48
#define ioda_Here()
Describes the dimensions of an Attribute or Variable.
Definition: Dimensions.h:22
std::vector< Dimensions_t > dimsCur
The dimensions of the data.
Definition: Dimensions.h:23
Dimensions_t dimensionality
The dimensionality (rank) of the data.
Definition: Dimensions.h:25
std::vector< Dimensions_t > dimsMax
This must always equal dimsCur for Attribute.
Definition: Dimensions.h:24
Used to specify Variable creation-time properties.
Definition: Has_Variables.h:57