OOPS
test/interface/LinearModel.h
Go to the documentation of this file.
1 /*
2  * (C) Copyright 2009-2016 ECMWF.
3  *
4  * This software is licensed under the terms of the Apache Licence Version 2.0
5  * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
6  * In applying this licence, ECMWF does not waive the privileges and immunities
7  * granted to it by virtue of its status as an intergovernmental organisation nor
8  * does it submit to any jurisdiction.
9  */
10 
11 #ifndef TEST_INTERFACE_LINEARMODEL_H_
12 #define TEST_INTERFACE_LINEARMODEL_H_
13 
14 #include <algorithm>
15 #include <cmath>
16 #include <iomanip>
17 #include <iostream>
18 #include <limits>
19 #include <memory>
20 #include <string>
21 #include <vector>
22 
23 #define ECKIT_TESTING_SELF_REGISTER_CASES 0
24 
25 #include <boost/noncopyable.hpp>
26 
27 #include "eckit/config/LocalConfiguration.h"
28 #include "eckit/testing/Test.h"
29 #include "oops/base/Geometry.h"
30 #include "oops/base/Increment.h"
32 #include "oops/base/LinearModel.h"
33 #include "oops/base/Model.h"
37 #include "oops/base/State.h"
39 #include "oops/base/Variables.h"
43 #include "oops/mpi/mpi.h"
44 #include "oops/runs/Test.h"
45 #include "oops/util/DateTime.h"
46 #include "oops/util/dot_product.h"
47 #include "oops/util/Duration.h"
48 #include "test/TestEnvironment.h"
49 
50 namespace test {
51 
52 // =============================================================================
53 
54 template <typename MODEL> class LinearModelFixture : private boost::noncopyable {
63 
64  public:
65  static const eckit::Configuration & test() {return *getInstance().test_;}
66  static const Geometry_ & resol() {return *getInstance().resol_;}
67  static const oops::Variables & ctlvars() {return *getInstance().ctlvars_;}
68  static const util::DateTime & time() {return *getInstance().time_;}
69  static const Covariance_ & covariance() {return *getInstance().B_;}
70  static const Model_ & model() {return *getInstance().model_;}
71  static const State_ & xref() {return *getInstance().xref_;}
72  static const ModelAux_ & bias() {return *getInstance().bias_;}
73  static const ModelAuxIncr_ & dbias() {return *getInstance().dbias_;}
74  static const LinearModel_ & tlm() {return *getInstance().tlm_;}
75  static void reset() {
76  getInstance().tlm_.reset();
77  getInstance().B_.reset();
78  getInstance().time_.reset();
79  getInstance().xref_.reset();
80  getInstance().model_.reset();
81  getInstance().dbias_.reset();
82  getInstance().bias_.reset();
83  getInstance().ctlvars_.reset();
84  getInstance().resol_.reset();
85  getInstance().test_.reset();
86  }
87 
88  private:
90  static LinearModelFixture<MODEL> theLinearModelFixture;
91  return theLinearModelFixture;
92  }
93 
95  test_.reset(new eckit::LocalConfiguration(TestEnvironment::config(), "linear model test"));
96  const util::Duration len(test_->getString("forecast length"));
97 
98  const eckit::LocalConfiguration resolConfig(TestEnvironment::config(), "geometry");
99  resol_.reset(new Geometry_(resolConfig, oops::mpi::world()));
100 
101  ctlvars_.reset(new oops::Variables(TestEnvironment::config(), "analysis variables"));
102 
103  const eckit::LocalConfiguration biasConf(TestEnvironment::config(), "model aux control");
104  bias_.reset(new ModelAux_(*resol_, biasConf));
105 
106  const eckit::LocalConfiguration dbiasConf =
107  TestEnvironment::config().getSubConfiguration("model aux error");
108  dbias_.reset(new ModelAuxIncr_(*resol_, dbiasConf));
109 
110  const eckit::LocalConfiguration nlConf(TestEnvironment::config(), "model");
111  model_.reset(new Model_(*resol_, nlConf));
112 
113  const eckit::LocalConfiguration iniConf(TestEnvironment::config(), "initial condition");
114  xref_.reset(new State_(*resol_, iniConf));
115  time_.reset(new util::DateTime(xref_->validTime()));
116 
117 // Create a covariance matrix
118  oops::instantiateCovarFactory<MODEL>();
119  const eckit::LocalConfiguration covar(TestEnvironment::config(), "background error");
121 
122 // Linear model configuration
123  tlConf_.reset(new eckit::LocalConfiguration(TestEnvironment::config(), "linear model"));
124 
125 // Setup trajectory for TL and AD
126  oops::instantiateLinearModelFactory<MODEL>();
129  tlm_.reset(new LinearModel_(*resol_, *tlConf_));
131  State_ xx(*xref_);
132  model_->forecast(xx, *bias_, len, post);
133  }
134 
135  ~LinearModelFixture<MODEL>() {}
136 
137  std::unique_ptr<const eckit::LocalConfiguration> test_;
138  std::unique_ptr<const eckit::LocalConfiguration> tlConf_;
139  std::unique_ptr<const Geometry_> resol_;
140  std::unique_ptr<const util::DateTime> time_;
141  std::unique_ptr<const oops::Variables> ctlvars_;
142  std::unique_ptr<const State_> xref_;
143  std::unique_ptr<const Model_> model_;
144  std::unique_ptr<const ModelAux_> bias_;
145  std::unique_ptr<const ModelAuxIncr_> dbias_;
146  std::unique_ptr<const Covariance_> B_;
147  std::shared_ptr<LinearModel_> tlm_;
148 };
149 
150 // =============================================================================
151 
152 /// \brief tests constructor, timeResolution() method and print method
153 template <typename MODEL> void testLinearModelConstructor() {
154  typedef LinearModelFixture<MODEL> Test_;
155 
156  const util::Duration zero(0);
157  EXPECT(Test_::tlm().timeResolution() > zero);
158  oops::Log::test() << "Testing LinearModel: " << Test_::tlm() << std::endl;
159 }
160 
161 // -----------------------------------------------------------------------------
162 
163 template <typename MODEL> void testLinearModelZeroLength() {
164  typedef LinearModelFixture<MODEL> Test_;
165  typedef oops::Increment<MODEL> Increment_;
166  typedef oops::ModelAuxIncrement<MODEL> ModelAuxIncr_;
167 
168  const util::DateTime vt(Test_::time());
169  const util::Duration zero(0);
170 
171  Increment_ dxref(Test_::resol(), Test_::ctlvars(), vt);
172  Test_::covariance().randomize(dxref);
173  ModelAuxIncr_ daux(Test_::dbias());
174  const double ininorm = dxref.norm();
175  EXPECT(ininorm > 0.0);
176 
177  Increment_ dx(Test_::resol(), Test_::ctlvars(), vt);
178  Increment_ dxm(Test_::resol(), Test_::tlm().variables(), vt);
179  dxm = dxref;
180  Test_::tlm().forecastTL(dxm, daux, zero);
181  dx = dxm;
182  EXPECT(dx.validTime() == vt);
183  EXPECT(dx.norm() == ininorm);
184 
185  dxm.zero();
186  dxm = dxref;
187  Test_::tlm().forecastAD(dxm, daux, zero);
188  dx = dxm;
189  EXPECT(dx.validTime() == vt);
190  EXPECT(dx.norm() == ininorm);
191 }
192 
193 // -----------------------------------------------------------------------------
194 
195 template <typename MODEL> void testLinearModelZeroPert() {
196  typedef LinearModelFixture<MODEL> Test_;
197  typedef oops::Increment<MODEL> Increment_;
198  typedef oops::ModelAuxIncrement<MODEL> ModelAuxIncr_;
199 
200  const util::Duration len(Test_::test().getString("forecast length"));
201  const util::DateTime t1(Test_::time());
202  const util::DateTime t2(t1 + len);
203  EXPECT(t2 > t1);
204 
205  Increment_ dx(Test_::resol(), Test_::tlm().variables(), t1);
206  ModelAuxIncr_ daux(Test_::dbias());
207 
208  dx.zero();
209  daux.zero();
210  EXPECT(dx.norm() == 0.0);
211  Test_::tlm().forecastTL(dx, daux, len);
212  EXPECT(dx.validTime() == t2);
213  EXPECT(dx.norm() == 0.0);
214 
215  dx.zero();
216  daux.zero();
217  EXPECT(dx.norm() == 0.0);
218  Test_::tlm().forecastAD(dx, daux, len);
219  EXPECT(dx.validTime() == t1);
220  EXPECT(dx.norm() == 0.0);
221 }
222 
223 // -----------------------------------------------------------------------------
224 
225 template <typename MODEL> void testLinearModelLinearity() {
226  typedef LinearModelFixture<MODEL> Test_;
227  typedef oops::Increment<MODEL> Increment_;
228  typedef oops::ModelAuxIncrement<MODEL> ModelAuxIncr_;
229 
230  const util::Duration len(Test_::test().getString("forecast length"));
231  const util::DateTime t1(Test_::time());
232  const util::DateTime t2(t1 + len);
233  EXPECT(t2 > t1);
234  const double zz = 3.1415;
235 
236  Increment_ dx1(Test_::resol(), Test_::tlm().variables(), t1);
237  Test_::covariance().randomize(dx1);
238  ModelAuxIncr_ daux1(Test_::dbias());
239  EXPECT(dx1.norm() > 0.0);
240 
241  Increment_ dx2(dx1);
242  ModelAuxIncr_ daux2(daux1);
243 
244  Test_::tlm().forecastTL(dx1, daux1, len);
245  EXPECT(dx1.validTime() == t2);
246  dx1 *= zz;
247  daux1 *= zz;
248 
249  dx2 *= zz;
250  daux2 *= zz;
251  Test_::tlm().forecastTL(dx2, daux2, len);
252  EXPECT(dx2.validTime() == t2);
253 
254  const double tol = Test_::test().getDouble("tolerance AD");
255  EXPECT(oops::is_close(dx1.norm(), dx2.norm(), tol));
256 }
257 
258 // -----------------------------------------------------------------------------
259 
260 template <typename MODEL> void testLinearApproximation() {
261  typedef LinearModelFixture<MODEL> Test_;
262  typedef oops::Increment<MODEL> Increment_;
263  typedef oops::State<MODEL> State_;
264 
265  const util::Duration len(Test_::test().getString("forecast length"));
266  const util::DateTime t1(Test_::time());
267  const util::DateTime t2(t1 + len);
268  EXPECT(t2 > t1);
269 
270  Increment_ dx0(Test_::resol(), Test_::tlm().variables(), t1);
271  Test_::covariance().randomize(dx0);
272  EXPECT(dx0.norm() > 0.0);
273 
274  Increment_ dx(dx0);
275  Test_::tlm().forecastTL(dx, Test_::dbias(), len);
276  const double dxnorm = dx.norm();
277 
279  State_ xx0(Test_::xref());
280  Test_::model().forecast(xx0, Test_::bias(), len, post);
281 
282  const unsigned int ntest = Test_::test().getInt("iterations TL");
283  double zz = 1.0;
284  if (Test_::test().has("first multiplier TL")) {
285  zz = Test_::test().getDouble("first multiplier TL");
286  }
287 
288  std::vector<double> errors;
289  for (unsigned int jtest = 0; jtest < ntest; ++jtest) {
290  State_ xx(Test_::xref());
291  Increment_ pert(dx0);
292  pert *= zz;
293  xx += pert;
294  Test_::model().forecast(xx, Test_::bias(), len, post);
295 
296  Increment_ diff(Test_::resol(), Test_::tlm().variables(), t2);
297  diff.diff(xx, xx0);
298  const double difnorm = diff.norm();
299  const double err = zz * dxnorm / difnorm;
300  Increment_ derr(dx);
301  derr *= zz;
302  derr -= diff;
303  const double errnorm = derr.norm();
304  errors.push_back(errnorm / difnorm);
305  oops::Log::test() << "TL error = " << std::setprecision(16) << err
306  << ", relative error = " << errnorm / difnorm << std::endl;
307  zz /= 10.0;
308  }
309 
310 // Analyze results
311  const double approx = *std::min_element(errors.begin(), errors.end());
312  oops::Log::test() << "Test TL min error = " << approx << std::endl;
313  const double tol = Test_::test().getDouble("tolerance TL");
314  EXPECT(approx < tol);
315 }
316 
317 // -----------------------------------------------------------------------------
318 
319 template <typename MODEL> void testLinearModelAdjoint() {
320  typedef LinearModelFixture<MODEL> Test_;
321  typedef oops::Increment<MODEL> Increment_;
322  typedef oops::ModelAuxIncrement<MODEL> ModelAuxIncr_;
323 
324  const util::Duration len(Test_::test().getString("forecast length"));
325  const util::DateTime t1(Test_::time());
326  const util::DateTime t2(t1 + len);
327  EXPECT(t2 > t1);
328 
329  Increment_ dx11(Test_::resol(), Test_::tlm().variables(), t1);
330  Test_::covariance().randomize(dx11);
331  ModelAuxIncr_ daux1(Test_::dbias());
332  EXPECT(dx11.norm() > 0.0);
333  Increment_ dx12(dx11);
334  Test_::tlm().forecastTL(dx12, daux1, len);
335  EXPECT(dx12.norm() > 0.0);
336  Increment_ dx22(Test_::resol(), Test_::tlm().variables(), t2);
337  Test_::covariance().randomize(dx22);
338  ModelAuxIncr_ daux2(Test_::dbias());
339  EXPECT(dx22.norm() > 0.0);
340  Increment_ dx21(dx22);
341  Test_::tlm().forecastAD(dx21, daux2, len);
342  EXPECT(dx21.norm() > 0.0);
343 
344  EXPECT(dx11.norm() != dx22.norm());
345  EXPECT(dx11.validTime() == t1);
346  EXPECT(dx21.validTime() == t1);
347  EXPECT(dx12.validTime() == t2);
348  EXPECT(dx22.validTime() == t2);
349 
350  const double dot1 = dot_product(dx11, dx21);
351  const double dot2 = dot_product(dx12, dx22);
352  const double tol = Test_::test().getDouble("tolerance AD");
353  EXPECT(oops::is_close(dot1, dot2, tol));
354 }
355 
356 // =============================================================================
357 
358 template <typename MODEL>
359 class LinearModel : public oops::Test {
360  public:
363 
364  private:
365  std::string testid() const override {return "test::LinearModel<" + MODEL::name() + ">";}
366 
367  void register_tests() const override {
368  std::vector<eckit::testing::Test>& ts = eckit::testing::specification();
369 
370  ts.emplace_back(CASE("interface/LinearModel/testLinearModelConstructor")
371  { testLinearModelConstructor<MODEL>(); });
372  ts.emplace_back(CASE("interface/LinearModel/testLinearModelZeroLength")
373  { testLinearModelZeroLength<MODEL>(); });
374  ts.emplace_back(CASE("interface/LinearModel/testLinearModelZeroPert")
375  { testLinearModelZeroPert<MODEL>(); });
376  ts.emplace_back(CASE("interface/LinearModel/testLinearModelLinearity")
377  { testLinearModelLinearity<MODEL>(); });
378  ts.emplace_back(CASE("interface/LinearModel/testLinearApproximation")
379  { testLinearApproximation<MODEL>(); });
380  ts.emplace_back(CASE("interface/LinearModel/testLinearModelAdjoint")
381  { testLinearModelAdjoint<MODEL>(); });
382  }
383 
384  void clear() const override {}
385 };
386 
387 // =============================================================================
388 
389 } // namespace test
390 
391 #endif // TEST_INTERFACE_LINEARMODEL_H_
Geometry class used in oops; subclass of interface class interface::Geometry.
Increment class used in oops.
Abstract linear forecast model used by high level algorithms and applications.
Auxiliary state related to model (could be e.g. model bias), not used at the moment.
Auxiliary Increment related to model, not used at the moment.
Abstract nonlinear forecast model used by high level algorithms and applications.
Control model post processing.
Definition: PostProcessor.h:30
void enrollProcessor(PostBase_ *pp)
Definition: PostProcessor.h:38
Control model post processing.
State class used in oops; subclass of interface class interface::State.
Save trajectory during forecast run.
static const eckit::Configuration & test()
std::unique_ptr< const ModelAuxIncr_ > dbias_
std::unique_ptr< const ModelAux_ > bias_
oops::ModelSpaceCovarianceBase< MODEL > Covariance_
static const Covariance_ & covariance()
oops::ModelAuxControl< MODEL > ModelAux_
std::unique_ptr< const util::DateTime > time_
oops::Geometry< MODEL > Geometry_
static const util::DateTime & time()
std::unique_ptr< const Covariance_ > B_
std::shared_ptr< LinearModel_ > tlm_
static LinearModelFixture< MODEL > & getInstance()
static const oops::Variables & ctlvars()
std::unique_ptr< const eckit::LocalConfiguration > test_
static const Geometry_ & resol()
static const ModelAuxIncr_ & dbias()
std::unique_ptr< const State_ > xref_
std::unique_ptr< const eckit::LocalConfiguration > tlConf_
static const LinearModel_ & tlm()
std::unique_ptr< const oops::Variables > ctlvars_
oops::LinearModel< MODEL > LinearModel_
oops::ModelAuxIncrement< MODEL > ModelAuxIncr_
std::unique_ptr< const Model_ > model_
std::unique_ptr< const Geometry_ > resol_
static const ModelAux_ & bias()
oops::Increment< MODEL > Increment_
void clear() const override
void register_tests() const override
std::string testid() const override
static const eckit::Configuration & config()
const eckit::mpi::Comm & world()
Default communicator with all MPI tasks (ie MPI_COMM_WORLD)
Definition: oops/mpi/mpi.cc:84
logical function has(this, var)
void testLinearModelConstructor()
tests constructor, timeResolution() method and print method
void testLinearModelAdjoint()
void testLinearModelZeroLength()
void testLinearModelZeroPert()
void testLinearApproximation()
CASE("test_linearmodelparameterswrapper_valid_name")
void testLinearModelLinearity()