3 from collections.abc
import Iterable
6 import matplotlib.pyplot
as plt
7 from matplotlib.dates
import ConciseDateFormatter, DateFormatter, AutoDateLocator
17 colorIterator = [
'k',
'b',
'g',
'r',
'c',
'm']
19 styleIterator = [
'-',
'--',
'-.',
':']
22 defaultPColors = colorIterator*len(styleIterator)
23 defaultPLineStyles = []
24 for style
in styleIterator:
25 defaultPLineStyles += [style]*len(colorIterator)
33 def plotColor(nLines = 1, index = 0, nSpaghetti = None):
34 if nSpaghetti
is not None and nLines >= nSpaghetti:
35 pColors = [
'0.45']*nSpaghetti
36 for i
in list(range(0, nLines - nSpaghetti + 1)):
40 return defaultPColors[np.mod(index,len(defaultPColors))]
43 if nSpaghetti
is not None and nLines >= nSpaghetti:
44 pLineStyles = [
'--']*nSpaghetti
45 for i
in list(range(0, nLines - nSpaghetti + 1)):
47 return pLineStyles[index]
49 return defaultPLineStyles[np.mod(index,len(defaultPLineStyles))]
51 plotSpecs = [
'k-*',
'b-*',
'g-*',
'r-*',
'c-*',
'm-*',
52 'k--+',
'b--+',
'g--+',
'r--+',
'c--+',
'm--+']
53 plotMarkers = [
'*',
'*',
'*',
'*',
'*',
'*',
54 '+',
'+',
'+',
'+',
'+',
'+']
58 def setup_fig(nx=1, ny=1, inch_width=1.5, aspect=1.0, ybuffer=True):
71 fig.set_size_inches(nx*inch_width,aspect*ny*inch_width)
73 fig.set_size_inches(0.9*nx*inch_width,0.9*aspect*ny*inch_width)
80 ybuffer=True, xbuffer=False):
88 if xbuffer: wspace = 0.6
91 if ybuffer: hspace = 0.70
93 fig.subplots_adjust(wspace=wspace,hspace=hspace)
96 fig.savefig(filename+
'.'+filetype,dpi=200,bbox_inches=
'tight')
98 fig.savefig(filename+
'.'+filetype,bbox_inches=
'tight')
105 if isinstance(x_[0],dt.timedelta):
108 x.append(xVal.total_seconds())
115 d = dt.timedelta(seconds=x)
130 vals[
'HH'], hrem = divmod(d.seconds, 3600)
136 vals[
'MM'], vals[
'SS'] = divmod(hrem, 60)
140 depends[
'MM'] = [
'MM',
'SS']
144 depends[
'SS'] = [
'SS']
146 if vals[
'MM'] == 0
and vals[
'SS'] == 0:
151 for key
in vals.keys():
154 for dep
in depends[key]:
155 if vals[dep] > 0: include =
True
159 out += prefs[key]+fmts[key].
format(vals[key])+suffs[key]
164 DTimeLocator = AutoDateLocator()
165 DTimeFormatter = ConciseDateFormatter(DTimeLocator)
166 TDeltaFormatter = matplotlib.ticker.FuncFormatter(timeDeltaTicks)
171 if isinstance(x[0],dt.datetime):
172 ax.xaxis.set_major_locator(DTimeLocator)
173 ax.xaxis.set_major_formatter(DTimeFormatter)
176 ax.xaxis.get_offset_text().set_fontsize(3)
177 if isinstance(x[0],dt.timedelta):
179 ax.set_xlim(min(x),max(x))
183 ticks = np.arange(x[0],x[-1]+tstep,tstep)
187 ax.xaxis.set_major_formatter(TDeltaFormatter)
188 ax.xaxis.set_tick_params(rotation=30)
189 ax.set_xlabel(
'Lead Time',fontsize=4)
194 signdef=False,symmetric=True):
195 if not np.isnan(xmin_)
and not np.isnan(xmax_):
199 if isinstance(plotVals[0], Iterable):
200 xmin = np.nanmin(plotVals[0])
201 xmax = np.nanmax(plotVals[0])
202 for vals
in plotVals[1:]:
203 xmin = np.nanmin([np.nanmin(vals),xmin])
204 xmax = np.nanmax([np.nanmin(vals),xmax])
206 xmin = np.nanmin(plotVals)
207 xmax = np.nanmax(plotVals)
209 xmaxabs=np.nanmax([abs(xmin),abs(xmax)])*1.2
210 if xmaxabs == 0.0
or np.isnan(xmaxabs):
214 roundfact = np.round(1. / 10.0 ** np.floor(np.log10(xmaxabs)))
215 if np.isnan(roundfact)
or roundfact <= 0.0: roundfact = 1.0
217 if signdef
or not symmetric:
218 maxxval = np.ceil( xmax*roundfact ) / roundfact
219 minxval = np.floor( xmin*roundfact ) / roundfact
221 maxxval = np.ceil( xmaxabs*roundfact ) / roundfact
222 minxval = np.floor( - xmaxabs*roundfact ) / roundfact
223 return minxval, maxxval
255 if float(value).is_integer():
def timeDeltaTicks(x, pos)
def format_x_for_dates(ax, x)
def setup_fig(nx=1, ny=1, inch_width=1.5, aspect=1.0, ybuffer=True)
def plotLineStyle(nLines=1, index=0, nSpaghetti=None)
def uniqueMembers(listVar)
def get_clean_ax_limits(xmin_=np.NaN, xmax_=np.NaN, plotVals=[np.NaN], signdef=False, symmetric=True)
def finalize_fig(fig, filename='temporary_figure', filetype='png', ybuffer=True, xbuffer=False)
def plotColor(nLines=1, index=0, nSpaghetti=None)