MPAS-JEDI
plot_utils.py
Go to the documentation of this file.
1 #!/usr/bin/env python3
2 
3 from collections.abc import Iterable
4 import datetime as dt
5 import matplotlib
6 import matplotlib.pyplot as plt
7 from matplotlib.dates import ConciseDateFormatter, DateFormatter, AutoDateLocator
8 import numpy as np
9 import os
10 import pandas as pd
11 
12 
13 #============================
14 # figure/plotting definitions
15 #============================
16 
17 colorIterator = ['k','b','g','r','c','m']
18 
19 styleIterator = ['-','--','-.',':']
20 
21 # fast varying line colors
22 defaultPColors = colorIterator*len(styleIterator)
23 defaultPLineStyles = []
24 for style in styleIterator:
25  defaultPLineStyles += [style]*len(colorIterator)
26 
27 # fast varying line styles
28 #defaultPLineStyles = styleIterator*len(colorIterator)
29 #defaultPColors = []
30 #for color in colorIterator:
31 # defaultPColors += [color]*len(styleIterator)
32 
33 def plotColor(nLines = 1, index = 0, nSpaghetti = None):
34  if nSpaghetti is not None and nLines >= nSpaghetti:
35  pColors = ['0.45']*nSpaghetti
36  for i in list(range(0, nLines - nSpaghetti + 1)):
37  pColors += [plotColor(1, i)]
38  return pColors[index]
39  else:
40  return defaultPColors[np.mod(index,len(defaultPColors))]
41 
42 def plotLineStyle(nLines = 1, index = 0, nSpaghetti = None):
43  if nSpaghetti is not None and nLines >= nSpaghetti:
44  pLineStyles = ['--']*nSpaghetti
45  for i in list(range(0, nLines - nSpaghetti + 1)):
46  pLineStyles += [plotLineStyle(1, i)]
47  return pLineStyles[index]
48  else:
49  return defaultPLineStyles[np.mod(index,len(defaultPLineStyles))]
50 
51 plotSpecs = ['k-*', 'b-*', 'g-*', 'r-*', 'c-*', 'm-*',
52  'k--+','b--+','g--+','r--+','c--+','m--+']
53 plotMarkers = ['*','*','*','*','*','*',
54  '+','+','+','+','+','+']
55 
56 
57 ###############################################################################
58 def setup_fig(nx=1, ny=1, inch_width=1.5, aspect=1.0, ybuffer=True):
59 #INPUTS
60 # nx - number of subplots in x direction
61 # ny - number of subplots in y direction
62 # inch_width - rough subplot size in inches
63 # ybuffer - whether to give extra y space for labeling
64 #
65 #OUTPUT
66 # fig - a new figure with standard sizing
67 
68  fig = plt.figure()
69 
70  if ybuffer:
71  fig.set_size_inches(nx*inch_width,aspect*ny*inch_width)
72  else:
73  fig.set_size_inches(0.9*nx*inch_width,0.9*aspect*ny*inch_width)
74 
75  return(fig)
76 
77 
78 ###############################################################################
79 def finalize_fig(fig, filename='temporary_figure', filetype='png',
80  ybuffer=True, xbuffer=False):
81 #INPUTS
82 # fig - plt.figure() type
83 # filename - name of figure file without extension
84 # filetype - file extension, e.g., 'png'
85 # x/ybuffer - whether to give extra x/y space for labeling
86 
87  wspace = 0.35
88  if xbuffer: wspace = 0.6
89 
90  hspace = 0.40
91  if ybuffer: hspace = 0.70
92 
93  fig.subplots_adjust(wspace=wspace,hspace=hspace)
94 
95  if filetype == 'png':
96  fig.savefig(filename+'.'+filetype,dpi=200,bbox_inches='tight')
97  if filetype == 'pdf':
98  fig.savefig(filename+'.'+filetype,bbox_inches='tight')
99 
100  plt.close(fig)
101 
102 
103 ###############################################################################
105  if isinstance(x_[0],dt.timedelta):
106  x = []
107  for xVal in x_:
108  x.append(xVal.total_seconds())
109  return x
110  return x_
111 
112 
113 ###############################################################################
114 def timeDeltaTicks(x, pos):
115  d = dt.timedelta(seconds=x)
116  i = '{:d}'
117  i02 = '{:02d}'
118  vals = {}
119  fmts = {}
120  prefs = {}
121  suffs = {}
122  depends = {}
123 
124  vals['D'] = d.days
125  fmts['D'] = i
126  prefs['D'] = ''
127  suffs['D'] = 'd '
128  depends['D'] = ['D']
129 
130  vals['HH'], hrem = divmod(d.seconds, 3600)
131  fmts['HH'] = i02
132  prefs['HH'] = ''
133  suffs['HH'] = ''
134  #depends['HH'] = ['HH','MM','SS']
135 
136  vals['MM'], vals['SS'] = divmod(hrem, 60)
137  fmts['MM'] = i02
138  prefs['MM'] = ':'
139  suffs['MM'] = ''
140  depends['MM'] = ['MM','SS']
141  fmts['SS'] = i02
142  prefs['SS'] = ':'
143  suffs['SS'] = ''
144  depends['SS'] = ['SS']
145 
146  if vals['MM'] == 0 and vals['SS'] == 0:
147  fmts['HH'] = i
148  suffs['HH'] = 'h'
149 
150  out = ''
151  for key in vals.keys():
152  include = False
153  if key in depends:
154  for dep in depends[key]:
155  if vals[dep] > 0: include = True
156  else:
157  include = True
158  if include:
159  out += prefs[key]+fmts[key].format(vals[key])+suffs[key]
160 
161  return out
162 
163 #DTimeLocator = AutoDateLocator(interval_multiples=True)
164 DTimeLocator = AutoDateLocator()
165 DTimeFormatter = ConciseDateFormatter(DTimeLocator) #DateFormatter('%m-%d_%HZ')
166 TDeltaFormatter = matplotlib.ticker.FuncFormatter(timeDeltaTicks)
167 
168 
169 ###############################################################################
171  if isinstance(x[0],dt.datetime):
172  ax.xaxis.set_major_locator(DTimeLocator)
173  ax.xaxis.set_major_formatter(DTimeFormatter)
174 # ax.xaxis.set_tick_params(rotation=30)
175 # ax.set_xlabel('Date',fontsize=4)
176  ax.xaxis.get_offset_text().set_fontsize(3)
177  if isinstance(x[0],dt.timedelta):
178  x = TDeltas2Seconds(x)
179  ax.set_xlim(min(x),max(x))
180  tstep = 3600*3 #3 hours
181  ntick = 500
182  while ntick > 8:
183  ticks = np.arange(x[0],x[-1]+tstep,tstep)
184  ntick = len(ticks)
185  tstep = tstep * 2
186  ax.set_xticks(ticks)
187  ax.xaxis.set_major_formatter(TDeltaFormatter)
188  ax.xaxis.set_tick_params(rotation=30)
189  ax.set_xlabel('Lead Time',fontsize=4)
190 
191 
192 ###############################################################################
193 def get_clean_ax_limits(xmin_=np.NaN,xmax_=np.NaN,plotVals=[np.NaN],
194  signdef=False,symmetric=True):
195  if not np.isnan(xmin_) and not np.isnan(xmax_):
196  xmin = xmin_
197  xmax = xmax_
198  else:
199  if isinstance(plotVals[0], Iterable):
200  xmin = np.nanmin(plotVals[0])
201  xmax = np.nanmax(plotVals[0])
202  for vals in plotVals[1:]:
203  xmin = np.nanmin([np.nanmin(vals),xmin])
204  xmax = np.nanmax([np.nanmin(vals),xmax])
205  else:
206  xmin = np.nanmin(plotVals)
207  xmax = np.nanmax(plotVals)
208 
209  xmaxabs=np.nanmax([abs(xmin),abs(xmax)])*1.2
210  if xmaxabs == 0.0 or np.isnan(xmaxabs):
211  minxval = 0.0
212  maxxval = 1.0
213  else:
214  roundfact = np.round(1. / 10.0 ** np.floor(np.log10(xmaxabs)))
215  if np.isnan(roundfact) or roundfact <= 0.0: roundfact = 1.0
216 
217  if signdef or not symmetric:
218  maxxval = np.ceil( xmax*roundfact ) / roundfact
219  minxval = np.floor( xmin*roundfact ) / roundfact
220  else:
221  maxxval = np.ceil( xmaxabs*roundfact ) / roundfact
222  minxval = np.floor( - xmaxabs*roundfact ) / roundfact
223  return minxval, maxxval
224 
225 
226 #===========================
227 # general purpose functions
228 #===========================
229 
230 def uniqueMembers(listVar):
231 #PURPOSE return a list without repeating members
232  output = []
233  for x in listVar:
234  if x not in output:
235  output.append(x)
236  return output
237 
238 
239 #########################################################
240 def isfloat(value):
241 #PURPOSE determine if value can be converted to float
242  try:
243  float(value)
244  return True
245  except ValueError:
246  return False
247 
248 
249 #########################################################
250 def isint(value):
251 #PURPOSE determine if value can be converted to int
252  try:
253  int(value)
254  if isfloat(value):
255  if float(value).is_integer():
256  return True
257  else:
258  return False
259  else:
260  return True
261  except ValueError:
262  return False
def timeDeltaTicks(x, pos)
Definition: plot_utils.py:114
def format_x_for_dates(ax, x)
Definition: plot_utils.py:170
def setup_fig(nx=1, ny=1, inch_width=1.5, aspect=1.0, ybuffer=True)
Definition: plot_utils.py:58
def plotLineStyle(nLines=1, index=0, nSpaghetti=None)
Definition: plot_utils.py:42
def TDeltas2Seconds(x_)
Definition: plot_utils.py:104
def uniqueMembers(listVar)
Definition: plot_utils.py:230
def get_clean_ax_limits(xmin_=np.NaN, xmax_=np.NaN, plotVals=[np.NaN], signdef=False, symmetric=True)
Definition: plot_utils.py:194
def finalize_fig(fig, filename='temporary_figure', filetype='png', ybuffer=True, xbuffer=False)
Definition: plot_utils.py:80
def isint(value)
Definition: plot_utils.py:250
def plotColor(nLines=1, index=0, nSpaghetti=None)
Definition: plot_utils.py:33
def isfloat(value)
Definition: plot_utils.py:240