|
def | __init__ (self) |
|
def | specific_humidity (self, dewp_K, pres_Pa) |
|
def | r_sub_s (self, pres_Pa, temp_K) |
|
def | e_sub_s (self, temp_K) |
|
def | r_sub_i (self, pres_Pa, temp_K) |
|
def | e_sub_i (self, temp_K) |
|
def | std_atmos (self, pres_Pa) |
|
def | std_atmos_p (self, height) |
|
def | precipitable_water (self, pres_Pa, w_non) |
|
def | dir_speed_2_uv (self, wdir, wspd) |
|
def | altim_2_sfcPressure (self, altim, elev) |
|
def | theta_e (self, pres_Pa, temp_K, w_non, tlcl_K) |
|
def | t_lcl (self, temp_K, tdew_K) |
|
def | t_dew (self, pres_Pa, w_non) |
|
def | theta_wetb (self, thetae_K) |
|
def | compT_fr_The (self, thelcl_K, pres_Pa) |
|
Definition at line 15 of file meteo_utils.py.
◆ __init__()
def meteo_utils.meteo_utils.__init__ |
( |
|
self | ) |
|
◆ altim_2_sfcPressure()
def meteo_utils.meteo_utils.altim_2_sfcPressure |
( |
|
self, |
|
|
|
altim, |
|
|
|
elev |
|
) |
| |
From altimeter (inches of mercury, Hg), and station elevation (m),
compute surface pressure returned in Pascals.
Definition at line 216 of file meteo_utils.py.
◆ compT_fr_The()
def meteo_utils.meteo_utils.compT_fr_The |
( |
|
self, |
|
|
|
thelcl_K, |
|
|
|
pres_Pa |
|
) |
| |
pres_Pa = Pressure in Pascals
thelcl = Theta-e at LCL (units in Kelvin)
Temperature (K) is returned given Theta-e at LCL
and a pressure. This describes a moist-adiabat.
This temperature is the parcel temp at level Pres
along moist adiabat described by theta-e.
Definition at line 318 of file meteo_utils.py.
◆ dir_speed_2_uv()
def meteo_utils.meteo_utils.dir_speed_2_uv |
( |
|
self, |
|
|
|
wdir, |
|
|
|
wspd |
|
) |
| |
From wind direction and speed, compute u,v wind components
Definition at line 203 of file meteo_utils.py.
◆ e_sub_i()
def meteo_utils.meteo_utils.e_sub_i |
( |
|
self, |
|
|
|
temp_K |
|
) |
| |
compute saturation vapor pressure (Pa) over ice with
polynomial fit of Goff-Gratch (1946) formulation. (Walko, 1991)
Definition at line 129 of file meteo_utils.py.
◆ e_sub_s()
def meteo_utils.meteo_utils.e_sub_s |
( |
|
self, |
|
|
|
temp_K |
|
) |
| |
compute saturation vapor pressure (Pa) over liquid with
polynomial fit of Goff-Gratch (1946) formulation. (Walko, 1991)
Definition at line 77 of file meteo_utils.py.
◆ precipitable_water()
def meteo_utils.meteo_utils.precipitable_water |
( |
|
self, |
|
|
|
pres_Pa, |
|
|
|
w_non |
|
) |
| |
Input is a column ordered with lowest index is physically lower in the atmosphere (pressure decreasing as the index increases).
pres_Pa = Pressure in Pascals
w_non = mixing ratio (non-dimensional = kg/kg)
returned precipitable water value in meters only below 150mb
Definition at line 181 of file meteo_utils.py.
◆ r_sub_i()
def meteo_utils.meteo_utils.r_sub_i |
( |
|
self, |
|
|
|
pres_Pa, |
|
|
|
temp_K |
|
) |
| |
compute saturation mixing ratio (kg/kg) by calling function
to calculate saturation vapor pressure over ice.
pres_Pa - pressure (pa)
temp_K - temperature (k)
Definition at line 107 of file meteo_utils.py.
◆ r_sub_s()
def meteo_utils.meteo_utils.r_sub_s |
( |
|
self, |
|
|
|
pres_Pa, |
|
|
|
temp_K |
|
) |
| |
compute saturation mixing ratio (kg/kg) by calling function
to calculate saturation vapor pressure over water.
pres_Pa - pressure (pa)
temp_K - temperature (k)
Definition at line 55 of file meteo_utils.py.
◆ specific_humidity()
def meteo_utils.meteo_utils.specific_humidity |
( |
|
self, |
|
|
|
dewp_K, |
|
|
|
pres_Pa |
|
) |
| |
Function to compute specific humidity
Required input variables are dewpoint (K) and surface pressure (Pa)
From dewpoint a simple water vapor mixing ratio is calculated, then
specific humidity is r/(1.+r)
Definition at line 39 of file meteo_utils.py.
◆ std_atmos()
def meteo_utils.meteo_utils.std_atmos |
( |
|
self, |
|
|
|
pres_Pa |
|
) |
| |
standard atmos height in meters is returned for given p in Pascals
Definition at line 157 of file meteo_utils.py.
◆ std_atmos_p()
def meteo_utils.meteo_utils.std_atmos_p |
( |
|
self, |
|
|
|
height |
|
) |
| |
standard atmos pressure in Pascals is returned for given height in meters
Definition at line 169 of file meteo_utils.py.
◆ t_dew()
def meteo_utils.meteo_utils.t_dew |
( |
|
self, |
|
|
|
pres_Pa, |
|
|
|
w_non |
|
) |
| |
I cannot recall the original source of this function
pres_Pa = Pressure in Pascals
w_non = mixing ratio (non-dimensional = kg/kg)
Definition at line 276 of file meteo_utils.py.
◆ t_lcl()
def meteo_utils.meteo_utils.t_lcl |
( |
|
self, |
|
|
|
temp_K, |
|
|
|
tdew_K |
|
) |
| |
The following code was based on Bolton (1980) eqn #15
and claims to have 0.1 K maximum error within -35 < T < 35 C
temp_K = Temperature in Kelvin
tdew_K = Dewpoint T at Lifting Condensation Level (K)
Definition at line 258 of file meteo_utils.py.
◆ theta_e()
def meteo_utils.meteo_utils.theta_e |
( |
|
self, |
|
|
|
pres_Pa, |
|
|
|
temp_K, |
|
|
|
w_non, |
|
|
|
tlcl_K |
|
) |
| |
The following code was based on Bolton (1980) eqn #43
and claims to have 0.3 K maximum error within -35 < T < 35 C
pres_Pa = Pressure in Pascals
temp_K = Temperature in Kelvin
w_non = mixing ratio (non-dimensional = kg/kg)
tlcl_K = Temperature at Lifting Condensation Level (K)
Definition at line 230 of file meteo_utils.py.
◆ theta_wetb()
def meteo_utils.meteo_utils.theta_wetb |
( |
|
self, |
|
|
|
thetae_K |
|
) |
| |
Eqn below was gotten from polynomial fit to data in
Smithsonian Meteorological Tables showing Theta-e
and Theta-w
Definition at line 294 of file meteo_utils.py.
◆ C_2_K
meteo_utils.meteo_utils.C_2_K |
◆ Cp
meteo_utils.meteo_utils.Cp |
◆ DEG_2_RAD
meteo_utils.meteo_utils.DEG_2_RAD |
◆ FT_2_M
meteo_utils.meteo_utils.FT_2_M |
meteo_utils.meteo_utils.g |
◆ inHg_2_Pa
meteo_utils.meteo_utils.inHg_2_Pa |
◆ KTS_2_MS
meteo_utils.meteo_utils.KTS_2_MS |
◆ LAPSE
meteo_utils.meteo_utils.LAPSE |
◆ MS_2_KTS
meteo_utils.meteo_utils.MS_2_KTS |
◆ PI
meteo_utils.meteo_utils.PI |
meteo_utils.meteo_utils.R |
◆ RHO_WATER
meteo_utils.meteo_utils.RHO_WATER |
◆ STP_P
meteo_utils.meteo_utils.STP_P |
◆ STP_rho_air
meteo_utils.meteo_utils.STP_rho_air |
◆ STP_T
meteo_utils.meteo_utils.STP_T |
The documentation for this class was generated from the following file: