OOPS
SaddlePointLMPMatrix.h
Go to the documentation of this file.
1 /*
2  * (C) Copyright 2009-2016 ECMWF.
3  *
4  * This software is licensed under the terms of the Apache Licence Version 2.0
5  * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
6  * In applying this licence, ECMWF does not waive the privileges and immunities
7  * granted to it by virtue of its status as an intergovernmental organisation nor
8  * does it submit to any jurisdiction.
9  */
10 
11 #ifndef OOPS_ASSIMILATION_SADDLEPOINTLMPMATRIX_H_
12 #define OOPS_ASSIMILATION_SADDLEPOINTLMPMATRIX_H_
13 
14 #include <Eigen/Dense>
15 #include <iostream>
16 #include <memory>
17 #include <vector>
18 
19 #include <boost/noncopyable.hpp>
20 
28 
29 namespace oops {
30 
31  /// The preconditioner for the saddle-point minimizer.
32  /*!
33  * The preconditioner is obtained by using low-rank updates.
34  * Let us define the matrices:
35  *
36  * \f$ R = [ 0 Rp ], G = [ Zinv*Rp' 0 ] \f$
37  * \f$ [ Rq 0 ] [ 0 Zinv'*Rq' ] \f$
38  *
39  * \f$ F = I + G*P0inv*R \f$
40  *
41  * where \f$ P0 \f$ is the initial preconditioner and \f$ I \f$ is the
42  * identity matrix of order 2.
43  *
44  * Then the preconditioner is updated from
45  *
46  * \f$ Pk = P0inv - P0inv*R*Finv*G*P0inv \f$
47  *
48  * The solvers represent matrices as objects that implement a "multiply"
49  * method. This class defines objects that apply the saddle-point matrix.
50  */
51 
52 // -----------------------------------------------------------------------------
53 
54 template<typename MODEL, typename OBS>
55 class SaddlePointLMPMatrix : private boost::noncopyable {
61 
62  public:
63  explicit SaddlePointLMPMatrix(const CostFct_ & j);
64 
65  void setup(const std::vector<SPVector_> &, const std::vector<SPVector_> &);
66 
67  const int & getk() const {return nvec_;}
68 
69  void multiply(const SPVector_ &, SPVector_ &) const;
70 
71  private:
72  void Pinitmultiply(const SPVector_ &, SPVector_ &) const;
73 
74  void Gmultiply(const SPVector_ &, Eigen::VectorXd &) const;
75 
76  void Rmultiply(Eigen::VectorXd &, SPVector_ &) const;
77 
78  void Fmultiply(Eigen::VectorXd &, Eigen::VectorXd &) const;
79 
80  const CostFctWeak_ & j_;
81  const bool idmodel_;
82  std::vector<SPVector_> xyVEC_;
83  std::vector<SPVector_> pqVEC_;
84  std::vector<LagVector_> RpVEC_;
85  std::vector<CtrlInc_> RqVEC_;
86  std::unique_ptr<SPVector_> spvecinit_;
87  int nvec_;
88  Eigen::MatrixXd ZMat_;
89  Eigen::MatrixXd FMat_;
90 };
91 
92 // =============================================================================
93 
94 template<typename MODEL, typename OBS>
96  : j_(dynamic_cast<const CostFctWeak_ &>(j)),
97  idmodel_(false)
98 {}
99 
100 // -----------------------------------------------------------------------------
101 
102 template<typename MODEL, typename OBS>
103  void SaddlePointLMPMatrix<MODEL, OBS>::setup(const std::vector<SPVector_> & xyVEC,
104  const std::vector<SPVector_> & pqVEC) {
105  xyVEC_.clear();
106  pqVEC_.clear();
107  RpVEC_.clear();
108  RqVEC_.clear();
109  for (unsigned ii = 0; ii < xyVEC.size(); ++ii) {
110  xyVEC_.push_back(xyVEC[ii]);
111  pqVEC_.push_back(pqVEC[ii]);
112  }
113 
114  nvec_ = xyVEC_.size();
115 
116  if (nvec_ != 0) {
117  spvecinit_.reset(new SPVector_(xyVEC_[0]));
118  (*spvecinit_).zero();
119 
120  SPVector_ ww(xyVEC_[0]);
121  SPVector_ yy(xyVEC_[0]);
122 
123  // RpRqVEC = pqVEC - P0 * xyVEC
124  for (unsigned jv = 0; jv < nvec_; ++jv) {
125  this->Pinitmultiply(xyVEC_[jv], ww);
126  yy = pqVEC_[jv];
127  yy -= ww;
128  RpVEC_.push_back(yy.lambda());
129  RqVEC_.push_back(yy.dx());
130  }
131 
132  // Z = RpVEC'*xVEC
133  ZMat_.resize(nvec_, nvec_);
134  double calpha = 10;
135  for (unsigned jj = 0; jj < nvec_; ++jj) {
136  for (unsigned ii = 0; ii < nvec_; ++ii) {
137  ZMat_(ii, jj) = calpha * dot_product(RpVEC_[ii], xyVEC_[jj].lambda());
138  }
139  }
140 
141  // Get F Matrix explicitly
142  // Set Identity matrix
143  Eigen::MatrixXd Ik;
144  Ik = Eigen::MatrixXd::Identity(2*nvec_, 2*nvec_);
145 
146  // Apply Fmultiply to identity matrix
147  FMat_.resize(2*nvec_, 2*nvec_);
148  Eigen::VectorXd output(2*nvec_);
149  Eigen::VectorXd input(2*nvec_);
150  for (int ii = 0; ii < 2*nvec_; ii++) {
151  input = Ik.col(ii);
152  Fmultiply(input, output);
153  FMat_.col(ii) = output;
154  }
155  }
156 }
157 
158 // =============================================================================
159 template<typename MODEL, typename OBS>
161  SPVector_ & z) const {
162 // P0 = [D 0 L]
163 // [0 R 0]
164 // [Lt 0 0]
165 //
166 // where M = I.
167 
168  CtrlInc_ ww(x.lambda().dx());
169 
170 // ADJ block
171  j_.runADJ(ww, true);
172  z.dx() = x.lambda().dx();
173  z.dx() -= ww;
174 
175 // TLM block
176  ww = x.dx();
177  j_.runTLM(ww, true);
178  z.lambda().zero();
179  z.lambda().dx() = x.dx();
180  z.lambda().dx() -= ww;
181 
182 // Diagonal block
184  diag.dx(new CtrlInc_(j_.jb()));
185  j_.jb().multiplyB(x.lambda().dx(), diag.dx());
186  for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
187  diag.append(j_.jterm(jj).multiplyCovar(*x.lambda().getv(jj)));
188  }
189 
190  z.lambda() += diag;
191 
192 /*
193 // *********************************
194 // P0 = [D 0 I]
195 // [0 R 0]
196 // [I 0 0]
197  z.dx() = x.lambda().dx();
198  DualVector<MODEL, OBS> diag;
199  diag.dx(new CtrlInc_(j_.jb()));
200  j_.jb().multiplyB(x.lambda().dx(), diag.dx());
201  for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
202  diag.append(j_.jterm(jj).multiplyCovar(*x.lambda().getv(jj)));
203  }
204  z.lambda().zero();
205  z.lambda().dx() = x.dx();
206  z.lambda() += diag;
207 // *********************************
208 */
209 }
210 // =============================================================================
211 template<typename MODEL, typename OBS>
213  SPVector_ & z) const {
214 // z = P0inv*x - P0inv*R*Finv*G*P0inv*x
215 
217  SPVector_ svw(x);
218  SPVector_ svt(x);
219 
220  P0inv.multiply(x, z);
221  if (nvec_ != 0) {
222  Eigen::VectorXd rhs(2*nvec_);
223  Eigen::VectorXd finvx(2*nvec_);
224  this->Gmultiply(z, rhs); // rhs = G*z
225  finvx = FMat_.colPivHouseholderQr().solve(rhs); // finvx = Finv*rhs
226  this->Rmultiply(finvx, svw); // svw = R * finvx
227  P0inv.multiply(svw, svt); // svt = P0inv * svw
228  z -= svt; // z = z - svt
229  }
230 }
231 
232 // =============================================================================
233 template<typename MODEL, typename OBS>
235  Eigen::VectorXd & z) const {
236  Eigen::VectorXd v1(nvec_);
237  Eigen::VectorXd v2(nvec_);
238  Eigen::VectorXd ax(nvec_);
239  Eigen::VectorXd axt(nvec_);
240  Eigen::MatrixXd ZMatt(nvec_, nvec_);
241  ZMatt = ZMat_.transpose();
242 
243  // Rp'*x and Rq'*y
244  for (unsigned jj = 0; jj < nvec_; ++jj) {
245  v1(jj) = dot_product(RpVEC_[jj], x.lambda());
246  v2(jj) = dot_product(RqVEC_[jj], x.dx());
247  }
248 
249  ax = ZMat_.colPivHouseholderQr().solve(v1); // Zinv*Rp'*x
250  axt = ZMatt.colPivHouseholderQr().solve(v2); // Ztinv*Rq'*y
251  z << ax, axt; // z = [ax ; axt]
252 }
253 
254 // =============================================================================
255 template<typename MODEL, typename OBS>
256 void SaddlePointLMPMatrix<MODEL, OBS>::Rmultiply(Eigen::VectorXd & x, SPVector_ & rx) const {
257  LagVector_ ww(rx.lambda());
258  ww.zero();
259  CtrlInc_ zz(rx.dx());
260  zz.zero();
261 
262  for (unsigned ii = 0; ii < nvec_; ++ii) {
263  ww.axpy(x(ii + nvec_), RpVEC_[ii]);
264  zz.axpy(x(ii), RqVEC_[ii]);
265  }
266  rx.lambda() = ww;
267  rx.dx() = zz;
268 }
269 
270 // =============================================================================
271 template<typename MODEL, typename OBS>
273  Eigen::VectorXd & fx) const {
275  SPVector_ tmp(*spvecinit_);
276  SPVector_ tmp2(*spvecinit_);
277  Eigen::VectorXd ww(2*nvec_);
278 
279  fx = x;
280  this->Rmultiply(x, tmp);
281  P0inv.multiply(tmp, tmp2);
282  this->Gmultiply(tmp2, ww);
283  fx += ww;
284 }
285 
286 // -----------------------------------------------------------------------------
287 } // namespace oops
288 
289 #endif // OOPS_ASSIMILATION_SADDLEPOINTLMPMATRIX_H_
void zero()
Linear algebra operators.
void axpy(const double, const ControlIncrement &)
Weak Constraint 4D-Var Cost Function.
Definition: CostFctWeak.h:53
Cost Function.
Definition: CostFunction.h:53
Container of dual space vectors for all terms of the cost function.
Definition: DualVector.h:35
void dx(CtrlInc_ *dx)
Definition: DualVector.h:46
void append(std::unique_ptr< GeneralizedDepartures > &&)
Definition: DualVector.h:110
std::shared_ptr< const GeneralizedDepartures > getv(const unsigned) const
Definition: DualVector.h:129
void axpy(const double, const DualVector &)
Definition: DualVector.h:215
The preconditioner for the saddle-point minimizer.
CostFunction< MODEL, OBS > CostFct_
std::vector< SPVector_ > xyVEC_
void Fmultiply(Eigen::VectorXd &, Eigen::VectorXd &) const
std::vector< SPVector_ > pqVEC_
ControlIncrement< MODEL, OBS > CtrlInc_
std::vector< CtrlInc_ > RqVEC_
std::vector< LagVector_ > RpVEC_
SaddlePointVector< MODEL, OBS > SPVector_
DualVector< MODEL, OBS > LagVector_
void multiply(const SPVector_ &, SPVector_ &) const
SaddlePointLMPMatrix(const CostFct_ &j)
void Pinitmultiply(const SPVector_ &, SPVector_ &) const
void setup(const std::vector< SPVector_ > &, const std::vector< SPVector_ > &)
void Rmultiply(Eigen::VectorXd &, SPVector_ &) const
void Gmultiply(const SPVector_ &, Eigen::VectorXd &) const
CostFctWeak< MODEL, OBS > CostFctWeak_
std::unique_ptr< SPVector_ > spvecinit_
The preconditioner for the saddle-point minimizer.
void multiply(const SPVector_ &, SPVector_ &) const
Control vector for the saddle point formulation.
const Multipliers_ & lambda() const
Accessor method to get the lambda_ component.
const CtrlInc_ & dx() const
Accessor method to get the dx_ component.
The namespace for the main oops code.