OOPS
GETKFSolver.h
Go to the documentation of this file.
1 /*
2  * (C) Copyright 2020 UCAR.
3  *
4  * This software is licensed under the terms of the Apache Licence Version 2.0
5  * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
6  */
7 
8 #ifndef OOPS_ASSIMILATION_GETKFSOLVER_H_
9 #define OOPS_ASSIMILATION_GETKFSOLVER_H_
10 
11 #include <Eigen/Dense>
12 #include <cfloat>
13 #include <memory>
14 #include <string>
15 #include <utility>
16 #include <vector>
17 
18 #include "eckit/config/LocalConfiguration.h"
22 #include "oops/base/Departures.h"
24 #include "oops/base/Geometry.h"
27 #include "oops/base/ObsEnsemble.h"
28 #include "oops/base/Observations.h"
29 #include "oops/base/ObsSpaces.h"
30 #include "oops/base/State4D.h"
34 #include "oops/util/ConfigFunctions.h"
35 #include "oops/util/Logger.h"
36 #include "oops/util/Timer.h"
37 
38 namespace oops {
39 
40 /*!
41  * An implementation of the GETKF from Lei 2018 JAMES
42  *
43  * Lei, L., Whitaker, J. S., & Bishop, C. ( 2018). Improving assimilation
44  * of radiance observations by implementing model space localization in an
45  * ensemble Kalman filter. Journal of Advances in Modeling Earth Systems, 10,
46  * 3221– 3232. https://doi.org/10.1029/2018MS001468
47  */
48 template <typename MODEL, typename OBS>
49 class GETKFSolver : public LocalEnsembleSolver<MODEL, OBS> {
61 
62  public:
63  static const std::string classname() {return "oops::GETKFSolver";}
64 
65  /// Constructor (allocates Wa, wa, HZb_,
66  /// saves options from the config, computes VerticalLocEV_)
67  GETKFSolver(ObsSpaces_ &, const Geometry_ &, const eckit::Configuration &, size_t,
68  const State4D_ &);
69 
70  Observations_ computeHofX(const StateEnsemble4D_ &, size_t, bool) override;
71 
72  /// entire KF update (computeWeights+applyWeights) for a grid point GeometryIterator_
74  IncrementEnsemble4D_ &) override;
75 
76  private:
77  /// Computes weights for ensemble update with local observations
78  /// \param[in] omb Observation departures (nlocalobs)
79  /// \param[in] Yb Ensemble perturbations for all the background memebers
80  /// (nens*neig, nlocalobs)
81  /// \param[in] YbOrig Ensemble perturbations for the members to be updated (nens, nlocalobs)
82  /// \param[in] invvarR Inverse of observation error variances (nlocalobs)
83  void computeWeights(const Eigen::VectorXd & omb, const Eigen::MatrixXd & Yb,
84  const Eigen::MatrixXd & YbOrig, const Eigen::VectorXd & invvarR);
85 
86  /// Applies weights and adds posterior inflation
88  const GeometryIterator_ &);
89 
90  private:
92  // parameters
93  size_t nens_;
96  size_t neig_;
97  size_t nanal_;
98 
100 
101  Eigen::MatrixXd Wa_; // transformation matrix for ens. perts. Xa_=Xf*Wa
102  Eigen::VectorXd wa_; // transformation matrix for ens. mean xa_=xf*wa
103 };
104 
105 // -----------------------------------------------------------------------------
106 
107 template <typename MODEL, typename OBS>
109  const eckit::Configuration & config, size_t nens,
110  const State4D_ & xbmean)
111  : LocalEnsembleSolver<MODEL, OBS>(obspaces, geometry, config, nens, xbmean),
112  nens_(nens), geometry_(geometry),
113  vertloc_(config.getSubConfiguration("local ensemble DA.vertical localization"), xbmean[0]),
114  neig_(vertloc_.neig()), nanal_(neig_*nens_), HZb_(obspaces, nanal_)
115 {
116  options_.deserialize(config);
117  const LETKFInflationParameters & inflopt = options_.infl;
118 
119  // parse inflation options
120  Log::info() << "Multiplicative inflation multCoeff=" <<
121  inflopt.mult << std::endl;
122 
123  if (inflopt.dortpp()) {
124  Log::info() << "RTPP inflation will be applied with rtppCoeff=" <<
125  inflopt.rtpp << std::endl;
126  } else {
127  Log::info() << "RTPP inflation is not applied rtppCoeff is out of bounds (0,1], rtppCoeff="
128  << inflopt.rtpp << std::endl;
129  }
130 
131  if (inflopt.dortps()) {
132  Log::info() << "RTPS inflation will be applied with rtpsCoeff=" <<
133  inflopt.rtps << std::endl;
134  } else {
135  Log::info() << "RTPS inflation is not applied rtpsCoeff is out of bounds (0,1], rtpsCoeff="
136  << inflopt.rtps << std::endl;
137  }
138 
139  // pre-allocate transformation matrices
140  Wa_.resize(nanal_, nens);
141  wa_.resize(nanal_);
142 }
143 
144 // -----------------------------------------------------------------------------
145 template <typename MODEL, typename OBS>
147  size_t iteration, bool readFromFile) {
148  util::Timer timer(classname(), "computeHofX");
149 
150  // compute/read H(x) for the original ensemble members
151  // also computes omb_
152  Observations_ yb_mean =
153  LocalEnsembleSolver<MODEL, OBS>::computeHofX(ens_xx, iteration, readFromFile);
154  if (readFromFile) {
155  Log::debug() << "Read H(X) from disk" << std::endl;
156  // read modulated ensemble
157  Observations_ ytmp(yb_mean);
158  size_t ii = 0;
159  for (size_t iens = 0; iens < nens_; ++iens) {
160  for (size_t ieig = 0; ieig < neig_; ++ieig) {
161  ytmp.read("hofxm"+std::to_string(iteration)+"_"+std::to_string(ieig+1)+
162  "_"+std::to_string(iens+1));
163  HZb_[ii] = ytmp - yb_mean;
164  Log::test() << "H(Zx) - ymean for member " << iens+1 << " eig "<< ieig+1
165  << " :" << std::endl << HZb_[ii] << std::endl;
166  ii = ii + 1;
167  }
168  }
169  } else {
170  Log::debug() << "Computing H(X) online" << std::endl;
171  // modulate ensemble of obs
172  State4D_ xx_mean(ens_xx.mean());
173  IncrementEnsemble4D_ dx(ens_xx, xx_mean, xx_mean[0].variables());
174  IncrementEnsemble4D_ Ztmp(geometry_, xx_mean[0].variables(), ens_xx[0].validTimes(), neig_);
175  size_t ii = 0;
176  for (size_t iens = 0; iens < nens_; ++iens) {
177  vertloc_.modulateIncrement(dx[iens], Ztmp);
178  for (size_t ieig = 0; ieig < neig_; ++ieig) {
179  State4D_ tmpState = xx_mean;
180  tmpState += Ztmp[ieig];
181  Observations_ tmpObs(this->obspaces_);
182  eckit::LocalConfiguration config;
183  config.set("save hofx", false);
184  config.set("save qc", false);
185  config.set("save obs errors", false);
186  this->computeHofX4D(config, tmpState, tmpObs);
187  HZb_[ii] = tmpObs - yb_mean;
188  tmpObs.save("hofxm"+std::to_string(iteration)+"_"+std::to_string(ieig+1)+
189  "_"+std::to_string(iens+1));
190  Log::test() << "H(Zx) - ymean for member " << iens+1 << " eig "<< ieig+1 << " :"
191  << std::endl << HZb_[ii] << std::endl;
192  ii = ii + 1;
193  }
194  }
195  }
196  return yb_mean;
197 }
198 
199 // -----------------------------------------------------------------------------
200 
201 template <typename MODEL, typename OBS>
202 void GETKFSolver<MODEL, OBS>::computeWeights(const Eigen::VectorXd & dy,
203  const Eigen::MatrixXd & Yb,
204  const Eigen::MatrixXd & YbOrig,
205  const Eigen::VectorXd & R_invvar) {
206  // compute transformation matrix, save in Wa_, wa_
207  // Yb(nobs,neig*nens), YbOrig(nobs,nens)
208  // uses GSI GETKF code
209  util::Timer timer(classname(), "computeWeights");
210 
211  const int nobsl = dy.size();
212 
213  // cast eigen<double> to eigen<float>
214  Eigen::VectorXf dy_f = dy.cast<float>();
215  Eigen::MatrixXf Yb_f = Yb.cast<float>();
216  Eigen::MatrixXf YbOrig_f = YbOrig.cast<float>();
217  Eigen::VectorXf R_invvar_f = R_invvar.cast<float>();
218 
219  Eigen::MatrixXf Wa_f(nanal_, this->nens_);
220  Eigen::VectorXf wa_f(nanal_);
221 
222  // call into GSI interface to compute Wa and wa
223  const int getkf_inflation = 0;
224  const int denkf = 0;
225  const int getkf = 1;
226  letkf_core_f90(nobsl, Yb_f.data(), YbOrig_f.data(), dy_f.data(),
227  wa_f.data(), Wa_f.data(),
228  R_invvar_f.data(), nanal_, neig_,
229  getkf_inflation, denkf, getkf);
230  this->Wa_ = Wa_f.cast<double>();
231  this->wa_ = wa_f.cast<double>();
232 }
233 
234 // -----------------------------------------------------------------------------
235 
236 template <typename MODEL, typename OBS>
238  IncrementEnsemble4D_ & ana_pert,
239  const GeometryIterator_ & i) {
240  // apply Wa_, wa_
241  util::Timer timer(classname(), "applyWeights");
242 
243  const LETKFInflationParameters & inflopt = options_.infl;
244 
245  // allocate tmp arrays
246  LocalIncrement gptmpl = bkg_pert[0][0].getLocal(i);
247  std::vector<double> tmp = gptmpl.getVals();
248  size_t ngp = tmp.size();
249  Eigen::MatrixXd Xb(ngp, nens_);
250 
251  // loop through analysis times and ens. members
252  for (unsigned itime=0; itime < bkg_pert[0].size(); ++itime) {
253  // cast bkg_pert ensemble at grid point i as an Eigen matrix Xb
254  // modulates Xb
255  Xb = vertloc_.modulateIncrement(bkg_pert, i, itime);
256 
257  // postmulptiply
258  Eigen::VectorXd xa = Xb*wa_; // ensemble mean update
259  Eigen::MatrixXd Xa = Xb*Wa_; // ensemble perturbation update
260 
261  // compute non-modulated Xb for RTPP and RTPS
262  if (inflopt.dortpp() || inflopt.dortps()) {
263  Xb.resize(ngp, nens_);
264  for (size_t iens=0; iens < nens_; ++iens) {
265  LocalIncrement gp = bkg_pert[iens][itime].getLocal(i);
266  std::vector<double> tmp1 = gp.getVals();
267  for (size_t iv=0; iv < ngp; ++iv) {
268  Xb(iv, iens) = tmp1[iv];
269  }
270  }
271  }
272 
273  // RTPP inflation
274  if (inflopt.dortpp()) {
275  Xa = (1-inflopt.rtpp)*Xa+inflopt.rtpp*Xb;
276  }
277 
278  // RTPS inflation
279  double eps = DBL_EPSILON;
280  if (inflopt.dortps()) {
281  // posterior spread
282  Eigen::ArrayXd asprd = Xa.array().square().rowwise().sum()/(nens_-1);
283  asprd = asprd.sqrt();
284  asprd = (asprd < eps).select(eps, asprd); // avoid nan overflow for vars with no spread
285 
286  // prior spread
287  Eigen::ArrayXd fsprd = Xb.array().square().rowwise().sum()/(nens_-1);
288  fsprd = fsprd.sqrt();
289  fsprd = (fsprd < eps).select(eps, fsprd);
290 
291  // rtps inflation factor
292  Eigen::ArrayXd rtpsInfl = inflopt.rtps*((fsprd-asprd)/asprd) + 1;
293  rtpsInfl = (rtpsInfl < inflopt.rtpsInflMin()).select(inflopt.rtpsInflMin(), rtpsInfl);
294  rtpsInfl = (rtpsInfl > inflopt.rtpsInflMax()).select(inflopt.rtpsInflMax(), rtpsInfl);
295 
296  // inlfate perturbation matrix
297  Xa.array().colwise() *= rtpsInfl;
298  }
299 
300  // assign Xa_ to ana_pert
301  for (size_t iens=0; iens < nens_; ++iens) {
302  for (size_t iv=0; iv < ngp; ++iv) {
303  tmp[iv] = Xa(iv, iens)+xa(iv);
304  }
305  gptmpl.setVals(tmp);
306  ana_pert[iens][itime].setLocal(gptmpl, i);
307  }
308  }
309 }
310 
311 // -----------------------------------------------------------------------------
312 
313 template <typename MODEL, typename OBS>
315  const GeometryIterator_ & i,
316  IncrementEnsemble4D_ & ana_pert) {
317  util::Timer timer(classname(), "measurementUpdate");
318 
319  // create the local subset of observations
320  Departures_ locvector(this->obspaces_);
321  locvector.ones();
322  this->obsloc().computeLocalization(i, locvector);
323  locvector.mask(*(this->invVarR_));
324  Eigen::VectorXd local_omb_vec = this->omb_.packEigen(locvector);
325 
326  if (local_omb_vec.size() == 0) {
327  // no obs. so no need to update Wa_ and wa_
328  // ana_pert[i]=bkg_pert[i]
329  this->copyLocalIncrement(bkg_pert, i, ana_pert);
330  } else {
331  // if obs are present do normal KF update
332  // get local Yb & HZ
333  Eigen::MatrixXd local_Yb_mat = this->Yb_.packEigen(locvector);
334  Eigen::MatrixXd local_HZ_mat = this->HZb_.packEigen(locvector);
335  // create local obs errors
336  Eigen::VectorXd local_invVarR_vec = this->invVarR_->packEigen(locvector);
337  // and apply localization
338  Eigen::VectorXd localization = locvector.packEigen(locvector);
339  local_invVarR_vec.array() *= localization.array();
340  computeWeights(local_omb_vec, local_HZ_mat, local_Yb_mat, local_invVarR_vec);
341  applyWeights(bkg_pert, ana_pert, i);
342  }
343 }
344 
345 } // namespace oops
346 #endif // OOPS_ASSIMILATION_GETKFSOLVER_H_
Ensemble of Departures (can hold ensemble perturbations in the observation space)
Difference between two observation vectors.
Definition: Departures.h:44
void mask(ObsDataVec_< int >)
Mask out departures where the passed in qc flags are > 0.
Definition: Departures.h:209
Eigen::VectorXd packEigen(const Departures &) const
Pack departures in an Eigen vector (excluding departures that are masked out)
Definition: Departures.h:223
An implementation of the GETKF from Lei 2018 JAMES.
Definition: GETKFSolver.h:49
Departures< OBS > Departures_
Definition: GETKFSolver.h:50
void applyWeights(const IncrementEnsemble4D_ &, IncrementEnsemble4D_ &, const GeometryIterator_ &)
Applies weights and adds posterior inflation.
Definition: GETKFSolver.h:237
Eigen::VectorXd wa_
Definition: GETKFSolver.h:102
VerticalLocEV< MODEL > VerticalLocEV_
Definition: GETKFSolver.h:60
Eigen::MatrixXd Wa_
Definition: GETKFSolver.h:101
GeometryIterator< MODEL > GeometryIterator_
Definition: GETKFSolver.h:53
GETKFSolver(ObsSpaces_ &, const Geometry_ &, const eckit::Configuration &, size_t, const State4D_ &)
Definition: GETKFSolver.h:108
static const std::string classname()
Definition: GETKFSolver.h:63
DeparturesEnsemble< OBS > DeparturesEnsemble_
Definition: GETKFSolver.h:51
const Geometry_ & geometry_
Definition: GETKFSolver.h:94
IncrementEnsemble4D< MODEL > IncrementEnsemble4D_
Definition: GETKFSolver.h:54
DeparturesEnsemble_ HZb_
Definition: GETKFSolver.h:99
VerticalLocEV_ vertloc_
Definition: GETKFSolver.h:95
ObsEnsemble< OBS > ObsEnsemble_
Definition: GETKFSolver.h:55
Geometry< MODEL > Geometry_
Definition: GETKFSolver.h:52
void computeWeights(const Eigen::VectorXd &omb, const Eigen::MatrixXd &Yb, const Eigen::MatrixXd &YbOrig, const Eigen::VectorXd &invvarR)
Definition: GETKFSolver.h:202
StateEnsemble4D< MODEL > StateEnsemble4D_
Definition: GETKFSolver.h:59
Observations_ computeHofX(const StateEnsemble4D_ &, size_t, bool) override
computes ensemble H(xx), returns mean H(xx), saves as hofx iteration
Definition: GETKFSolver.h:146
void measurementUpdate(const IncrementEnsemble4D_ &, const GeometryIterator_ &, IncrementEnsemble4D_ &) override
entire KF update (computeWeights+applyWeights) for a grid point GeometryIterator_
Definition: GETKFSolver.h:314
State4D< MODEL > State4D_
Definition: GETKFSolver.h:58
ObsSpaces< OBS > ObsSpaces_
Definition: GETKFSolver.h:57
Observations< OBS > Observations_
Definition: GETKFSolver.h:56
LETKFSolverParameters options_
Definition: GETKFSolver.h:91
Geometry class used in oops; subclass of interface class interface::Geometry.
Ensemble of 4D increments.
size_t size() const
Accessors.
Parameters for LETKF inflation.
Parameter< LETKFInflationParameters > infl
Base class for LETKF-type solvers.
virtual Observations_ computeHofX(const StateEnsemble4D_ &xx, size_t iteration, bool readFromDisk)
computes ensemble H(xx), returns mean H(xx), saves as hofx iteration
void setVals(std::vector< double > &)
const std::vector< double > & getVals() const
Ensemble of observations (can hold ensemble of H(x))
Definition: ObsEnsemble.h:21
Observations Class.
Definition: Observations.h:35
void save(const std::string &) const
Save/read observations values.
Definition: Observations.h:141
void read(const std::string &)
Definition: Observations.h:148
Four dimensional state (vector of 3D States)
Definition: State4D.h:29
Ensemble of 4D states.
State4D_ mean() const
calculate ensemble mean
The namespace for the main oops code.
void letkf_core_f90(const int &, const float *, const float *, const float *, float *, float *, const float *, const int &, const int &, const int &, const int &, const int &)