OOPS
DRPLanczosMinimizer.h
Go to the documentation of this file.
1 /*
2  * (C) Copyright 2009-2016 ECMWF.
3  *
4  * This software is licensed under the terms of the Apache Licence Version 2.0
5  * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
6  * In applying this licence, ECMWF does not waive the privileges and immunities
7  * granted to it by virtue of its status as an intergovernmental organisation nor
8  * does it submit to any jurisdiction.
9  */
10 
11 #ifndef OOPS_ASSIMILATION_DRPLANCZOSMINIMIZER_H_
12 #define OOPS_ASSIMILATION_DRPLANCZOSMINIMIZER_H_
13 
14 #include <Eigen/Dense>
15 
16 #include <cmath>
17 #include <memory>
18 #include <string>
19 #include <vector>
20 
29 #include "oops/util/dot_product.h"
30 #include "oops/util/formats.h"
31 #include "oops/util/Logger.h"
32 #include "oops/util/printRunStats.h"
33 
34 namespace oops {
35 
36 /// DRPLanczos Minimizer
37 /*!
38  * \brief Derber-Rosati Preconditioned Lanczos solver.
39  *
40  * This solver is the Lanczos version of the DRPCG algorithm
41  * It solves \f$ Ax=b\f$ for the particular case \f$ A=B^{-1}+C\f$,
42  * without requiring the application of \f$ B^{-1}\f$.
43  *
44  * A must be square, symmetric, positive definite.
45  *
46  * A preconditioner must be supplied that, given a vector q, returns an
47  * approximation to \f$ (AB)^{-1} q\f$. Possible preconditioning
48  * is detailed in S. Gurol, PhD Manuscript, 2013.
49  * Note that the traditional \f$ B\f$-preconditioning corresponds to
50  * precond=\f$I\f$.
51  *
52  * On entry:
53  * - dx = starting point.
54  * - dxh = starting point, \f$ B^{-1} dx_{0}\f$.
55  * - rr = residual at starting point.
56  * - B = \f$ B \f$.
57  * - C = \f$ C \f$.
58  * - precond = preconditioner \f$ F_k \approx (AB)^{-1} \f$.
59  *
60  * On exit, dxh will contain \f$ B^{-1} x\f$ where x is the solution.
61  * The return value is the achieved reduction in residual norm.
62  *
63  * Iteration will stop if the maximum iteration limit "maxiter" is reached
64  * or if the residual norm reduces by a factor of "tolerance".
65  *
66  * Each matrix must implement a method:
67  * - void multiply(const VECTOR&, VECTOR&) const
68  *
69  * which applies the matrix to the first argument, and returns the
70  * matrix-vector product in the second. (Note: the const is optional, but
71  * recommended.)
72  */
73 
74 // -----------------------------------------------------------------------------
75 
76 template<typename MODEL, typename OBS> class DRPLanczosMinimizer : public DRMinimizer<MODEL, OBS> {
81 
82  public:
83  const std::string classname() const override {return "DRPLanczosMinimizer";}
84  DRPLanczosMinimizer(const eckit::Configuration &, const CostFct_ &);
86 
87  private:
88  double solve(CtrlInc_ &, CtrlInc_ &, CtrlInc_ &, const Bmat_ &, const HtRinvH_ &,
89  const double, const double, const int, const double) override;
90 
92 
93  std::vector<std::unique_ptr<CtrlInc_>> hvecs_;
94  std::vector<std::unique_ptr<CtrlInc_>> vvecs_;
95  std::vector<std::unique_ptr<CtrlInc_>> zvecs_;
96  std::vector<double> alphas_;
97  std::vector<double> betas_;
98 
99  // For diagnostics
100  eckit::LocalConfiguration diagConf_;
101 };
102 
103 // =============================================================================
104 
105 template<typename MODEL, typename OBS>
107  const CostFct_ & J)
108  : DRMinimizer<MODEL, OBS>(J), lmp_(conf), hvecs_(), vvecs_(), zvecs_(), alphas_(),
109  betas_(), diagConf_(conf) {}
110 
111 // -----------------------------------------------------------------------------
112 
113 template<typename MODEL, typename OBS>
115  const Bmat_ & B, const HtRinvH_ & HtRinvH,
116  const double costJ0Jb, const double costJ0JoJc,
117  const int maxiter, const double tolerance) {
118  util::printRunStats("DRPLanczos start");
119  // dx increment
120  // dxh B^{-1} dx
121  // rr (sum B^{-1} dx_i^{b} +) G^T H^{-1} d
122 
123  CtrlInc_ zz(dxh);
124  CtrlInc_ pr(dxh);
125  CtrlInc_ vv(rr);
126 
127  std::vector<double> ss;
128  std::vector<double> dd;
129 
130  // J0
131  const double costJ0 = costJ0Jb + costJ0JoJc;
132 
133  lmp_.update(vvecs_, hvecs_, zvecs_, alphas_, betas_);
134 
135  // z_{0} = B LMP r_{0}
136  lmp_.multiply(vv, pr);
137  B.multiply(pr, zz);
138 
139  // beta_{0} = sqrt( z_{0}^T r_{0} )
140  double beta = sqrt(dot_product(zz, vv));
141  const double beta0 = beta;
142 
143  // v_{1} = r_{0} / beta_{0}
144  vv *= 1/beta;
145  // pr_{1} = LMP r_{0} / beta_{0}
146  pr *= 1/beta;
147  // z_{1} = z_{0} / beta_{0}
148  zz *= 1/beta;
149 
150  // hvecs[0] = pr_{1} --> required for solution
151  hvecs_.emplace_back(std::unique_ptr<CtrlInc_>(new CtrlInc_(pr)));
152  // zvecs[0] = z_{1} ---> for re-orthogonalization
153  zvecs_.emplace_back(std::unique_ptr<CtrlInc_>(new CtrlInc_(zz)));
154  // vvecs[0] = v_{1} ---> for re-orthogonalization
155  vvecs_.emplace_back(std::unique_ptr<CtrlInc_>(new CtrlInc_(vv)));
156 
157  double normReduction = 1.0;
158 
159  Log::info() << std::endl;
160  for (int jiter = 0; jiter < maxiter; ++jiter) {
161  Log::info() << "DRPLanczos Starting Iteration " << jiter+1 << std::endl;
162  util::printRunStats("DRPLanczos iteration " + std::to_string(jiter+1));
163 
164  // v_{i+1} = ( pr_{i} + H^T R^{-1} H z_{i} ) - beta * v_{i-1}
165  HtRinvH.multiply(zz, vv);
166  vv += pr;
167 
168  if (jiter > 0) {
169  vv.axpy(-beta, *vvecs_[jiter-1]);
170  }
171 
172  // alpha_{i} = v_{i+1}^T z_{i}
173  double alpha = dot_product(zz, vv);
174 
175  // v_{i+1} = v_{i+1} - alpha_{i} v_{i}
176  vv.axpy(-alpha, *vvecs_[jiter]); // vv = vv - alpha * v_j
177 
178  // Re-orthogonalization
179  for (int jj = 0; jj < jiter; ++jj) {
180  double proj = dot_product(vv, *zvecs_[jj]);
181  vv.axpy(-proj, *vvecs_[jj]);
182  }
183 
184  // z_{i+1} = B LMP v_{i+1}
185  lmp_.multiply(vv, pr);
186  B.multiply(pr, zz);
187 
188  // beta_{i+1} = sqrt( zz_{i+1}^t, vv_{i+1} )
189  beta = sqrt(dot_product(zz, vv));
190 
191  // v_{i+1} = v_{i+1} / beta_{i+1}
192  vv *= 1/beta;
193  // pr_{i+1} = pr_{i+1} / beta_{i+1}
194  pr *= 1/beta;
195  // z_{i+1} = z_{i+1} / beta_{i+1}
196  zz *= 1/beta;
197 
198  // hvecs[i+1] =pr_{i+1}
199  hvecs_.emplace_back(std::unique_ptr<CtrlInc_>(new CtrlInc_(pr)));
200  // zvecs[i+1] = z_{i+1}
201  zvecs_.emplace_back(std::unique_ptr<CtrlInc_>(new CtrlInc_(zz)));
202  // vvecs[i+1] = v_{i+1}
203  vvecs_.emplace_back(std::unique_ptr<CtrlInc_>(new CtrlInc_(vv)));
204 
205  alphas_.push_back(alpha);
206 
207  if (jiter == 0) {
208  ss.push_back(beta0/alpha);
209  dd.push_back(beta0);
210  } else {
211  // Solve the tridiagonal system T_{i} s_{i} = beta0 * e_1
212  dd.push_back(beta0*dot_product(*zvecs_[0], vv));
213  TriDiagSolve(alphas_, betas_, dd, ss);
214  }
215 
216  betas_.push_back(beta);
217 
218  // Compute the quadratic cost function
219  // J[du_{i}] = J[0] - 0.5 s_{i}^T Z_{i}^T r_{0}
220  // Jb[du_{i}] = 0.5 s_{i}^T V_{i}^T Z_{i} s_{i}
221  double costJ = costJ0;
222 
223  double costJb = costJ0Jb;
224  for (int jj = 0; jj < jiter+1; ++jj) {
225  costJ -= 0.5 * ss[jj] * dot_product(*zvecs_[jj], rr);
226  costJb += 0.5 * ss[jj] * dot_product(*vvecs_[jj], *zvecs_[jj]) * ss[jj];
227  }
228  double costJoJc = costJ - costJb;
229 
230  // Gradient norm in precond metric --> sqrt(r'z) --> beta * s_{i}
231  double rznorm = beta*std::abs(ss[jiter]);
232  normReduction = rznorm/beta0;
233 
234  Log::info() << "DRPLanczos end of iteration " << jiter+1 << std::endl;
235  printNormReduction(jiter+1, rznorm, normReduction);
236  printQuadraticCostFunction(jiter+1, costJ, costJb, costJoJc);
237 
238  if (normReduction < tolerance) {
239  Log::info() << "DRPLanczos: Achieved required reduction in residual norm." << std::endl;
240  break;
241  }
242  }
243 
244  dx.zero();
245  dxh.zero();
246 
247  // Calculate the solution (dxh = Binv dx)
248  for (unsigned int jj = 0; jj < ss.size(); ++jj) {
249  dx.axpy(ss[jj], *zvecs_[jj]);
250  dxh.axpy(ss[jj], *hvecs_[jj]);
251  }
252 
253  // Compute and save the eigenvectors
254  writeEigenvectors(diagConf_, alphas_, betas_, dd, zvecs_, hvecs_, HtRinvH, pr, vv, zz);
255 
256  util::printRunStats("DRPLanczos end");
257  return normReduction;
258 }
259 
260 // -----------------------------------------------------------------------------
261 
262 } // namespace oops
263 
264 #endif // OOPS_ASSIMILATION_DRPLANCZOSMINIMIZER_H_
The matrix.
Definition: BMatrix.h:27
void multiply(const CtrlInc_ &x, CtrlInc_ &bx) const
Definition: BMatrix.h:33
void zero()
Linear algebra operators.
void axpy(const double, const ControlIncrement &)
Cost Function.
Definition: CostFunction.h:53
DR (Derber and Rosati) Minimizers.
Definition: DRMinimizer.h:46
DRPLanczos Minimizer.
std::vector< std::unique_ptr< CtrlInc_ > > hvecs_
std::vector< double > alphas_
std::vector< double > betas_
double solve(CtrlInc_ &, CtrlInc_ &, CtrlInc_ &, const Bmat_ &, const HtRinvH_ &, const double, const double, const int, const double) override
BMatrix< MODEL, OBS > Bmat_
std::vector< std::unique_ptr< CtrlInc_ > > zvecs_
std::vector< std::unique_ptr< CtrlInc_ > > vvecs_
CostFunction< MODEL, OBS > CostFct_
const std::string classname() const override
DRPLanczosMinimizer(const eckit::Configuration &, const CostFct_ &)
HtRinvHMatrix< MODEL, OBS > HtRinvH_
eckit::LocalConfiguration diagConf_
SpectralLMP< CtrlInc_ > lmp_
ControlIncrement< MODEL, OBS > CtrlInc_
void multiply(const CtrlInc_ &dx, CtrlInc_ &dz) const
Definition: HtRinvHMatrix.h:63
The solvers represent matrices as objects that implement a "multiply" method.
The namespace for the main oops code.
void printQuadraticCostFunction(int iteration, const double &costJ, const double &costJb, const double &costJoJc)
void TriDiagSolve(const std::vector< double > &diag, const std::vector< double > &sub, const std::vector< double > &rhs, std::vector< double > &sol)
void writeEigenvectors(const eckit::Configuration &diagConf, const std::vector< double > &diag, const std::vector< double > &sub, const std::vector< double > &rhs, std::vector< std::unique_ptr< ControlIncrement< MODEL, OBS >>> &zvecs, std::vector< std::unique_ptr< ControlIncrement< MODEL, OBS >>> &hvecs, const HtRinvHMatrix< MODEL, OBS > &HtRinvH, ControlIncrement< MODEL, OBS > &temp, ControlIncrement< MODEL, OBS > &eigenv, ControlIncrement< MODEL, OBS > &eigenz)
void printNormReduction(int iteration, const double &grad, const double &norm)