MPAS-JEDI
plot_inc.py
Go to the documentation of this file.
1 import os
2 import sys
3 import numpy as np
4 from netCDF4 import Dataset
5 import matplotlib
6 matplotlib.use('pdf')
7 import matplotlib.cm as cm
8 import matplotlib.pyplot as plt
9 from mpl_toolkits.basemap import Basemap
10 from mpl_toolkits.axes_grid1 import make_axes_locatable
11 import datetime as dt
12 from datetime import *
13 import ast
14 
15 #This script is for plotting MPAS background, analysis, increment, MPAS background and analysis compare to GFS analysis
16 #python plot_inc.py $DATE method variable level_interval USE_GFSANA $GFSANA_DIR
17 #python plot_inc.py $DATE 3denvar_bump theta 5 True /glade/work/${USER}/pandac/120km_GFSANA
18 #python plot_inc.py $DATE 3denvar_bump theta 5 False
19 
20 '''
21 Directory Structure:
22 test/
23  ├── mpas.3denvar_bump.2018-04-15_00.00.00.nc
24  ├── restart.2018-04-15_00.00.00.nc
25  ├── graphics/
26  │   ├── plot_inc.py
27  │   ├── ...
28 '''
29 
30 DATE = str(sys.argv[1])
31 DA_METHOD1 = str(sys.argv[2])
32 VAR_NAME = str(sys.argv[3])
33 INTERVAL = str(sys.argv[4])
34 
35 USE_GFSANA = ast.literal_eval(str(sys.argv[5])) #convert str to boolean
36 if (USE_GFSANA):
37  GFSANA_DIR = str(sys.argv[6])
38 
39 def readdata():
40  datein = datetime.strptime(DATE+'00','%Y%m%d%H%M%S')
41  print('datein=',datein)
42  datefile = datein.strftime('%Y-%m-%d_%H.%M.%S')
43 
44  bakfile = '../restart.'+datefile+'.nc'
45  baknc = Dataset(bakfile, "r")
46 
47  anafile = '../mpas.'+DA_METHOD1+'.'+datefile+'.nc'
48  ananc = Dataset(anafile, "r")
49 
50  #use gfsana
51  if (USE_GFSANA):
52  gfsfile = GFSANA_DIR+'/x1.40962.init.'+datefile+'.nc'
53  gfsnc = Dataset(gfsfile, "r")
54 
55  lats = np.array( baknc.variables['latCell'][:] ) * 180.0 / np.pi
56  lons = np.array( baknc.variables['lonCell'][:] ) * 180.0 / np.pi
57  xtime = np.array( baknc.variables['xtime'][:] )
58  nVertL = baknc.dimensions['nVertLevels']
59 
60  for lvl in range(0,nVertL.size,int(INTERVAL)):
61  print('lvl=',lvl)
62  bakmpas = np.array( baknc.variables[VAR_NAME][0,:,lvl] )
63  anampas = np.array( ananc.variables[VAR_NAME][0,:,lvl] )
64  ambmpas = anampas - bakmpas
65  plot(lats,lons,anampas,DATE,lvl+1,'MPASANA')
66  plot(lats,lons,bakmpas,DATE,lvl+1,'MPASBAK')
67  plot(lats,lons,ambmpas,DATE,lvl+1,'MPASAMB')
68 
69  if (USE_GFSANA):
70  gfs = np.array( gfsnc.variables[VAR_NAME][0,:,lvl] )
71  anamgfs = anampas - gfs
72  bakmgfs = bakmpas - gfs
73 
74  #compare with gfsana: plot()
75  plot(lats,lons,anamgfs,DATE,lvl+1,'MPASANA-GFSANA')
76  plot(lats,lons,bakmgfs,DATE,lvl+1,'MPASBAK-GFSANA')
77 
78 def plot(lats,lons,data,yyyymmddhh,lvl,source):
79  fig,ax=plt.subplots(figsize=(8,8))
80  map=Basemap(projection='cyl',llcrnrlat=-90,urcrnrlat=90,llcrnrlon=-180,urcrnrlon=180,resolution='c')
81  map.drawcoastlines()
82  map.drawcountries()
83  map.drawparallels(np.arange(-90,90,30),labels=[1,1,0,1])
84  map.drawmeridians(np.arange(-180,180,60),labels=[1,1,0,1])
85 
86  plt.title( source+' '+VAR_NAME+', lvl=' + str(lvl)+", "+yyyymmddhh)
87  #cont=plt.tricontourf(lons,lats,data,30,vmin=-(max(abs(data))),vmax=max(abs(data)),extend='both',cmap=cm.bwr)
88  cont=plt.tricontourf(lons,lats,data,30,cmap=cm.bwr)
89 #create axes for colorbar======================================================
90  divider = make_axes_locatable(ax)
91  cax = divider.append_axes("bottom",
92  size="3%", #width of the colorbar
93  pad=0.3) #space between colorbar and graph
94  plt.colorbar(cont,cax=cax,ax=ax,orientation='horizontal')
95  cax.xaxis.set_ticks_position('bottom') #set the orientation of the ticks of the colorbar
96 
97 #save figures
98  plt.savefig('distr_%s_%s_%s_%s.png'%(VAR_NAME,lvl,yyyymmddhh,source),dpi=200,bbox_inches='tight')
99  plt.close()
100 
101 def main():
102  readdata()
103 
104 if __name__ == '__main__': main()
105 
106 
def readdata()
Definition: plot_inc.py:39
def main()
Definition: plot_inc.py:101
def plot(lats, lons, data, yyyymmddhh, lvl, source)
Definition: plot_inc.py:78