3 import matplotlib.pyplot
as plt
4 from mpl_toolkits.axes_grid1
import make_axes_locatable
5 import matplotlib.axes
as maxes
10 BUMP log file name format:
12 mpas_3denvar_bump.info.0000
13 mpas_3dvar_bumpcov.info.0000
14 mpas_parametersbump_cov.info.0000
18 for files
in os.listdir(
'../'):
19 if fnmatch.fnmatch(files,
'mpas_*.info.0000'):
20 bumplogfiles.append(
'../'+files)
22 for bumplogfile
in bumplogfiles:
23 cmd =
"sed -n -e '/--- Compute covariance/,/--- Compute correlation/p' \
24 " + bumplogfile +
" > blocks.txt"
27 cmd =
"sed -e '/--- Compute covariance/d' \
29 -e '/Block 01_01_01_01/d' \
30 -e '/Block 02_02_01_01/d' \
31 -e '/Block 03_03_01_01/d' \
32 -e '/Block 04_04_01_01/d' \
33 -e '/Block 05_05_01_01/d' \
34 -e '/----------------------/d' \
35 -e '/--- Compute correlation/d' blocks.txt > tmp.txt"
37 file_name =
'covariance_'+bumplogfile[3:][:-10]+
'.txt'
38 cmd =
"awk '{print $2, $8}' tmp.txt > " + file_name +
" ; rm blocks.txt tmp.txt"
41 if (os.stat(file_name).st_size == 0):
42 print(file_name+
" is empty.")
46 with open(file_name,
'r')
as myfile:
49 all1 = numpy.asarray([a
for a
in filter(
None, line.split(
' '))])
53 print(
'Vertical Levels=',nlev)
54 plot(cov[0:nlev-1],lev[0:nlev-1],
'Variance',
'T',
'($K^2$)',bumplogfile[3:][:-10])
55 plot(cov[nlev:2*nlev-1],lev[nlev:2*nlev-1],
'Variance',
'P',
'($Pa^2$)',bumplogfile[3:][:-10])
56 plot(cov[2*nlev:3*nlev-1],lev[2*nlev:3*nlev-1],
'Variance',
'Q',
'($kg^2/kg^2$)',bumplogfile[3:][:-10])
57 plot(cov[3*nlev:4*nlev-1],lev[3*nlev:4*nlev-1],
'Variance',
'U',
'($m^2/s^2$)',bumplogfile[3:][:-10])
58 plot(cov[4*nlev:5*nlev-1],lev[4*nlev:5*nlev-1],
'Variance',
'V',
'($m^2/s^2$)',bumplogfile[3:][:-10])
60 def plot(var1,var2,var3,var4,var5,var6):
61 plt.plot(var1,var2,
'g-*',markersize=5)
62 plt.ylabel(
'Vertical Levels')
63 plt.xlabel(
'%s %s'%(var3,var5))
64 plt.legend(
'%s'%var4, loc=
'upper left')
67 plt.savefig(
'cov_%s_%s.png'%(var4,var6),dpi=200,bbox_inches=
'tight')
73 if __name__ ==
'__main__':
main()
def plot(var1, var2, var3, var4, var5, var6)