MPAS-JEDI
|
Functions | |
def | bootstrap_test () |
def | main () |
Variables | |
clustsN = np.multiply(NOMINAL_GROUP_SIZE,np.ones(NOMINAL_NUMBER_OF_GROUPS,dtype=int)) | |
alternative way to initialize cluster sizes clustsStart.append(0) nremain = N_SUPER_SAMPLE while nremain > 0: clustN = int(max([np.around(NOMINAL_GROUP_SIZE + np.random.randn(1)*SIGMAN), 1.0])) if np.sum(clustsN) + clustN > N_SUPER_SAMPLE - NOMINAL_GROUP_SIZE/4: clustN = N_SUPER_SAMPLE - np.sum(clustsN) clustsN.append( clustN ) nremain = nremain - clustN ntotal = np.sum(clustsN) clustsEnd.append(ntotal) clustsStart.append(clustsEnd[-1]) More... | |
delta = NOMINAL_GROUP_SIZE - \ | |
list | X1ClustsValues = [] |
dictionary | X1ClustsStats = {} |
clustStats = su.calcStats(X1ClustsValues[ic]) | |
X1ClustsStatsDF = pd.DataFrame.from_dict(X1ClustsStats) | |
aggClustStats = su.aggStatsDF(X1ClustsStatsDF) | |
list | X2ClustsValues = [] |
dictionary | X2ClustsStats = {} |
X2ClustsStatsDF = pd.DataFrame.from_dict(X2ClustsStats) | |
statsCIClustSamples | |
xVals = nBootSamples | |
ny = nFuncs | |
int | nx = 2 |
fig = pu.setup_fig(nx, ny, inch_width=2.2) | |
bootFunc = bootFuncs[ifunc] | |
string | sampleAggStat = "Mean" |
ax1 = fig.add_subplot(ny, nx, nx*ifunc+1) | |
list | plotVals = [] |
lineVals = deepcopy(statsCIFullSamples[ifunc]['VALUE']) | |
lineValsMin = deepcopy(statsCIFullSamples[ifunc]['LO']) | |
lineValsMax = deepcopy(statsCIFullSamples[ifunc]['HI']) | |
label | |
color | |
ls | |
linewidth | |
alpha | |
c | |
markersize | |
lh | |
fontsize | |
labelsize | |
minyval | |
maxyval | |
symmetric | |
ax2 = fig.add_subplot(ny, nx, nx*ifunc+2) | |
bins | |
string | filename = 'cluster_bootstrap_test/comparison' \ |
def bootstrap_demo.bootstrap_test | ( | ) |
def bootstrap_demo.main | ( | ) |
bootstrap_demo.aggClustStats = su.aggStatsDF(X1ClustsStatsDF) |
Definition at line 161 of file bootstrap_demo.py.
bootstrap_demo.alpha |
Definition at line 242 of file bootstrap_demo.py.
Definition at line 220 of file bootstrap_demo.py.
Definition at line 319 of file bootstrap_demo.py.
bootstrap_demo.bins |
Definition at line 320 of file bootstrap_demo.py.
bootstrap_demo.bootFunc = bootFuncs[ifunc] |
Definition at line 208 of file bootstrap_demo.py.
bootstrap_demo.c |
Definition at line 253 of file bootstrap_demo.py.
bootstrap_demo.clustsN = np.multiply(NOMINAL_GROUP_SIZE,np.ones(NOMINAL_NUMBER_OF_GROUPS,dtype=int)) |
alternative way to initialize cluster sizes clustsStart.append(0) nremain = N_SUPER_SAMPLE while nremain > 0: clustN = int(max([np.around(NOMINAL_GROUP_SIZE + np.random.randn(1)*SIGMAN), 1.0])) if np.sum(clustsN) + clustN > N_SUPER_SAMPLE - NOMINAL_GROUP_SIZE/4: clustN = N_SUPER_SAMPLE - np.sum(clustsN) clustsN.append( clustN ) nremain = nremain - clustN ntotal = np.sum(clustsN) clustsEnd.append(ntotal) clustsStart.append(clustsEnd[-1])
note: always causes non-negligible difference in CI
Definition at line 114 of file bootstrap_demo.py.
bootstrap_demo.clustStats = su.calcStats(X1ClustsValues[ic]) |
Definition at line 149 of file bootstrap_demo.py.
bootstrap_demo.color |
Definition at line 235 of file bootstrap_demo.py.
bootstrap_demo.delta = NOMINAL_GROUP_SIZE - \ |
Definition at line 116 of file bootstrap_demo.py.
Definition at line 205 of file bootstrap_demo.py.
string bootstrap_demo.filename = 'cluster_bootstrap_test/comparison' \ |
Definition at line 325 of file bootstrap_demo.py.
bootstrap_demo.fontsize |
Definition at line 308 of file bootstrap_demo.py.
bootstrap_demo.label |
Definition at line 234 of file bootstrap_demo.py.
bootstrap_demo.labelsize |
Definition at line 311 of file bootstrap_demo.py.
bootstrap_demo.lh |
Definition at line 304 of file bootstrap_demo.py.
bootstrap_demo.lineVals = deepcopy(statsCIFullSamples[ifunc]['VALUE']) |
Definition at line 225 of file bootstrap_demo.py.
bootstrap_demo.lineValsMax = deepcopy(statsCIFullSamples[ifunc]['HI']) |
Definition at line 227 of file bootstrap_demo.py.
bootstrap_demo.lineValsMin = deepcopy(statsCIFullSamples[ifunc]['LO']) |
Definition at line 226 of file bootstrap_demo.py.
bootstrap_demo.linewidth |
Definition at line 237 of file bootstrap_demo.py.
bootstrap_demo.ls |
Definition at line 236 of file bootstrap_demo.py.
bootstrap_demo.markersize |
Definition at line 255 of file bootstrap_demo.py.
bootstrap_demo.maxyval |
Definition at line 314 of file bootstrap_demo.py.
bootstrap_demo.minyval |
Definition at line 314 of file bootstrap_demo.py.
int bootstrap_demo.nx = 2 |
Definition at line 203 of file bootstrap_demo.py.
bootstrap_demo.ny = nFuncs |
Definition at line 202 of file bootstrap_demo.py.
bootstrap_demo.plotVals = [] |
Definition at line 222 of file bootstrap_demo.py.
string bootstrap_demo.sampleAggStat = "Mean" |
Definition at line 210 of file bootstrap_demo.py.
bootstrap_demo.statsCIClustSamples |
Definition at line 193 of file bootstrap_demo.py.
bootstrap_demo.symmetric |
Definition at line 314 of file bootstrap_demo.py.
dictionary bootstrap_demo.X1ClustsStats = {} |
Definition at line 143 of file bootstrap_demo.py.
bootstrap_demo.X1ClustsStatsDF = pd.DataFrame.from_dict(X1ClustsStats) |
Definition at line 153 of file bootstrap_demo.py.
list bootstrap_demo.X1ClustsValues = [] |
Definition at line 142 of file bootstrap_demo.py.
dictionary bootstrap_demo.X2ClustsStats = {} |
Definition at line 167 of file bootstrap_demo.py.
bootstrap_demo.X2ClustsStatsDF = pd.DataFrame.from_dict(X2ClustsStats) |
Definition at line 177 of file bootstrap_demo.py.
list bootstrap_demo.X2ClustsValues = [] |
Definition at line 166 of file bootstrap_demo.py.
bootstrap_demo.xVals = nBootSamples |
Definition at line 201 of file bootstrap_demo.py.