3 from collections.abc
import Iterable
4 from copy
import deepcopy
8 from scipy.spatial
import cKDTree
10 class InterpolateCartesian:
12 def __init__(self, XIn, YIn, ZIn, nInterpPoints = 5,
13 weightMethod = 'barycentricScalar',
14 distanceMethod = 'cartesian',
15 calculateDiagnostics = False):
16 assert len(XIn) == len(YIn),
'InterpolateCartesian: input coordinates must be identical size'
17 assert len(XIn) == len(ZIn),
'InterpolateCartesian: input coordinates must be identical size'
34 'barycentricScalar': {
45 'distanceMethod':
'cartesian',
48 assert weightMethod
in list(weightMethods.keys()), \
49 'InterpolateCartesian: '+weightMethod+
' is not one of the available weightMethods'
51 self.
weightMethodweightMethod = weightMethods[weightMethod][
'method']
53 self.
minInterpPointsminInterpPoints = weightMethods[weightMethod][
'minInterpPoints']
56 'InterpolateCartesian: '+weightMethod+
' weightMethod requires nInterpPoints > '+str(self.
minInterpPointsminInterpPoints)
62 self.
distanceMethoddistanceMethod = weightMethods[weightMethod].get(
63 'distanceMethod', distanceMethod)
67 self.
nInnIn = len(XIn)
72 XYZ = np.empty((self.
nInnIn, 3))
73 for ii
in np.arange(0, self.
nInnIn):
74 XYZ[ii,:] = np.asarray([self.
XInXIn[ii], self.
YInYIn[ii], self.
ZInZIn[ii]])
75 self.
ScaleScale = np.mean(np.sqrt(np.square(XYZ).sum(axis=1)))
77 self.
TreeInTreeIn = cKDTree(list(zip(XIn, YIn, ZIn)))
85 self.
nOutnOut = len(XOut)
86 self.nnInterpDistances, self.
nnInterpIndsnnInterpInds = \
88 list(zip(XOut, YOut, ZOut)),
95 'InterpolateCartesian: '+distanceMethod+
' is not one of the available distanceMethods'
107 if isinstance(Inds1, Iterable)
and isinstance(Inds2, Iterable):
108 assert len(Inds1) == len(Inds2),
'Inds1 must be same size as Inds2'
110 X1 = self.
XInXIn[Inds1]
111 Y1 = self.
YInYIn[Inds1]
112 Z1 = self.
ZInZIn[Inds1]
114 X2 = self.
XInXIn[Inds2]
115 Y2 = self.
YInYIn[Inds2]
116 Z2 = self.
ZInZIn[Inds2]
121 updateNeighbors = False):
123 assert len(XOut) == len(YOut),
'InterpolateCartesian::initWeights: output coordinates must be identical size'
124 assert len(XOut) == len(ZOut),
'InterpolateCartesian::initWeights: output coordinates must be identical size'
125 if len(self.
nnInterpIndsnnInterpInds) != len(XOut)
or updateNeighbors:
131 for kk, nnDistances
in enumerate(self.nnInterpDistances):
132 if nnDistances.min() < self.
epseps:
138 nnInterpWeightSums = np.sum(self.
nnInterpWeightsnnInterpWeights, axis=1)
146 masks = np.logical_not(np.identity(self.
nInterpPointsnInterpPoints))
147 for kk, (nnInds, nnDistances)
in enumerate(
148 list(zip(self.
nnInterpIndsnnInterpInds, self.nnInterpDistances))):
149 if nnDistances.min()*self.
ScaleScale < self.
epseps:
153 for jj, (nnInd, nnDistance, mask)
in enumerate(
154 list(zip(nnInds, nnDistances, masks))):
156 wprod = np.prod(otherDistances)
157 bw[jj] = 1.0 / np.prod(otherDistances)
160 for jj, (nnInd, nnDistance)
in enumerate(
161 list(zip(nnInds, nnDistances))):
162 bsw += bw[jj] / nnDistance
170 masks = np.logical_not(np.identity(self.
nInterpPointsnInterpPoints))
171 for kk, (nnInds, nnDistances)
in enumerate(
172 list(zip(self.
nnInterpIndsnnInterpInds, self.nnInterpDistances))):
173 if nnDistances.min()*self.
ScaleScale < self.
epseps:
177 for jj, (nnInd, nnDistance, mask)
in enumerate(
178 list(zip(nnInds, nnDistances, masks))):
180 unstWeights[jj] = 1.0 / np.prod(otherDistances) / nnDistance
181 self.
nnInterpWeightsnnInterpWeights[kk,:] = unstWeights / unstWeights.sum()
186 allOutInds = np.arange(0, self.
nOutnOut)
189 OnNode = self.nnInterpDistances.min(axis=1)*self.
ScaleScale < self.
epseps
190 OnNodeInds = allOutInds[OnNode]
191 minInds = np.argmin(self.nnInterpDistances[OnNodeInds,:], axis=1)
192 for (kk, minInd)
in list(zip(OnNodeInds, minInds)):
193 unstWeights[kk, minInd] = 1.0
196 OffNodeInds = allOutInds[np.logical_not(OnNode)]
197 otherNodesMasks = np.logical_not(np.identity(self.
nInterpPointsnInterpPoints))
198 otherNodesMaskInds = []
200 for otherNodesMask
in otherNodesMasks:
201 otherNodesMaskInds.append(allNodesInds[otherNodesMask])
203 unstWeights[OffNodeInds, :] = 1.0 / self.nnInterpDistances[OffNodeInds,:]
205 for jj, otherNodesInds
in enumerate(otherNodesMaskInds):
206 for otherNodeInd
in otherNodesInds:
209 self.
nnInterpIndsnnInterpInds[OffNodeInds, otherNodeInd]
211 unstWeights[OffNodeInds, jj] /= otherDistances
213 unstWeightsSum = unstWeights[OffNodeInds].sum(axis=1)
214 for node
in np.arange(0, unstWeights.shape[1]):
215 unstWeights[OffNodeInds,node] /= unstWeightsSum
224 subsetIndsPermutations = []
225 for inds
in itertools.combinations(
227 subsetIndsPermutations.append(list(inds))
228 subsetIndsPermutations = np.asarray(subsetIndsPermutations)
233 for kk, (nnInds, nnDistances)
in enumerate(
234 list(zip(self.
nnInterpIndsnnInterpInds, self.nnInterpDistances))):
239 for orderedSubsetInds
in subsetIndsPermutations:
244 subsetInds = np.roll(orderedSubsetInds, 1)
247 nnSubsetInds = nnInds[subsetInds]
270 x3 = (-d1**2 + d2**2 + d3**2) / (2 * d3)
271 radicand = d1**2 - (d3 - x3)**2
275 if (radicand/(d1**2)) < np.square(minAspectRatio):
277 y3 = np.sqrt(radicand)
280 denom = (y2-y3)*(x1-x3) + (x3-x2)*(y1-y3)
281 if np.abs(denom) == 0.0:
continue
283 l1, l2, l3 = nnDistances[subsetInds]
285 x = (-l2**2 + l1**2 + d3**2) / (2 * d3)
286 radicand = l2**2 - (d3 - x)**2
287 if (radicand/(l2**2)) < self.
epseps:
291 y = np.sqrt(radicand)
293 baryWeights[subsetInds[0]] = ((y2-y3)*(x-x3) + (x3-x2)*(y-y3)) / denom
294 baryWeights[subsetInds[1]] = ((y3-y1)*(x-x3) + (x1-x3)*(y-y3)) / denom
295 baryWeights[subsetInds[2]] = 1. - baryWeights[subsetInds[0]] \
296 - baryWeights[subsetInds[1]]
299 minBaryCheck = baryWeights.min() >= 0.0
300 maxBaryCheck = baryWeights.max() <= 1.0
and baryWeights.max() > 0.0
301 if minBaryCheck
and maxBaryCheck:
break
303 assert minBaryCheck
and maxBaryCheck, \
305 baryWeights checks not satisfied; try increasing nInterpPoints
306 baryWeights = '''+str(baryWeights)+
'''
307 nnInterpDistances = '''+str(nnDistances)+
'''
308 nnInds = '''+str(nnInds)+
'''
309 denom = '''+str(denom)+
'''
322 d1^2 = '''+str(d1**2)+
'''
323 (d3-x3)^2 = '''+str((d3 - x3)**2)+
'''
324 l2^2 = '''+str(l2**2)+
'''
325 (d3-x)^2 = '''+str((d3 - x)**2)+
'''
328 LatIn = '''+str(self.LatIn[nnInds]*180.0/np.pi)+
'''
329 LonIn = '''+str(self.LonIn[nnInds]*180.0/np.pi)+
'''
330 LatIn = '''+str(self.LatIn[nnSubsetInds]*180.0/np.pi)+
'''
331 LonIn = '''+str(self.LonIn[nnSubsetInds]*180.0/np.pi)+
'''
337 minAspectRatio = 0.01
344 minBaryCheck = np.full(self.
nOutnOut,
False)
345 maxBaryCheck = np.full(self.
nOutnOut,
False)
346 allOutInds = np.arange(0, self.
nOutnOut)
360 for ii, indsSet
in enumerate(itertools.combinations(
363 orderedSubsetInds = np.array(list(indsSet))
368 subsetInds = np.roll(orderedSubsetInds, 1)
370 KeepSearching = np.logical_or(
371 np.logical_not(minBaryCheck),
372 np.logical_not(maxBaryCheck)
374 KeepSearchingInds = allOutInds[KeepSearching]
375 nTargets = len(KeepSearchingInds)
376 if nTargets == 0:
break
381 nnSubsetInds = self.
nnInterpIndsnnInterpInds[KeepSearchingInds,:]
382 nnSubsetInds = nnSubsetInds[:,subsetInds]
384 baryWeights[KeepSearchingInds,:] = 0.0
405 x1, y1 = np.zeros(nTargets), np.zeros(nTargets)
406 x2, y2 = d3, np.zeros(nTargets)
407 x3 = (-d1**2 + d2**2 + d3**2) / (2 * d3)
408 radicand = d1**2 - (d3 - x3)**2
413 AspectCheck = (radicand/(d3**2)) >= np.square(minAspectRatio)
414 y3 = np.zeros(nTargets)
415 y3[AspectCheck] = np.sqrt(radicand[AspectCheck])
418 denom = (y2-y3)*(x1-x3) + (x3-x2)*(y1-y3)
419 DeterminantCheck = np.abs(denom) > 0.0
422 KeepGoing = np.logical_and(AspectCheck, DeterminantCheck)
423 if KeepGoing.sum() == 0:
continue
426 x1, y1 = x1[KeepGoing], y1[KeepGoing]
427 x2, y2 = x2[KeepGoing], y2[KeepGoing]
428 x3, y3 = x3[KeepGoing], y3[KeepGoing]
429 denom = denom[KeepGoing]
430 KeepSearchingInds = KeepSearchingInds[KeepGoing]
431 nTargets = len(KeepSearchingInds)
434 self.
triangleAreatriangleArea[KeepSearchingInds] = 0.5 * d3 * y3
435 self.
aspectRatioaspectRatio[KeepSearchingInds] = y3 / d3
437 l1 = self.nnInterpDistances[KeepSearchingInds,subsetInds[0]]
438 l2 = self.nnInterpDistances[KeepSearchingInds,subsetInds[1]]
440 x = (-l2**2 + l1**2 + d3**2) / (2 * d3)
441 radicand = l2**2 - (d3 - x)**2
445 ValidY = (radicand >= 0.0)
446 if ValidY.sum() == 0:
continue
448 y = np.zeros(nTargets)
449 y[ValidY] = np.sqrt(radicand[ValidY])
451 w1 = ((y2-y3)*(x-x3) + (x3-x2)*(y-y3)) / denom
452 w2 = ((y3-y1)*(x-x3) + (x1-x3)*(y-y3)) / denom
455 KeepSearchingInds = KeepSearchingInds[ValidY]
458 self.
determinantdeterminant[KeepSearchingInds] = denom[ValidY]
459 self.
ycoordycoord[KeepSearchingInds] = y[ValidY]
461 baryWeights[KeepSearchingInds,subsetInds[0]] = w1
462 baryWeights[KeepSearchingInds,subsetInds[1]] = w2
463 baryWeights[KeepSearchingInds,subsetInds[2]] = 1. - (w1 + w2)
467 for kk
in KeepSearchingInds:
468 minBaryCheck[kk] = baryWeights[kk,:].min() >= 0.0
469 maxBaryCheck[kk] = baryWeights[kk,:].max() <= 1.0
and baryWeights[kk,:].max() > 0.0
471 allChecks = np.logical_and(minBaryCheck, maxBaryCheck)
473 assert np.all(allChecks), \
475 baryWeights checks not satisfied for '''+str(self.
nOutnOut - allChecks.sum())+
' of '+str(self.
nOutnOut)+
''' target locations
476 --> try increasing nInterpPoints
482 minAspectRatio = 0.01
489 minBaryCheck = np.full(self.
nOutnOut,
False)
490 maxBaryCheck = np.full(self.
nOutnOut,
False)
491 allOutInds = np.arange(0, self.
nOutnOut)
505 for ii, indsSet
in enumerate(itertools.combinations(
508 orderedSubsetInds = np.array(list(indsSet))
512 subsetInds = orderedSubsetInds
514 KeepSearching = np.logical_or(
515 np.logical_not(minBaryCheck),
516 np.logical_not(maxBaryCheck)
518 KeepSearchingInds = allOutInds[KeepSearching]
519 nTargets = len(KeepSearchingInds)
520 if nTargets == 0:
break
523 print(nTargets, subsetInds)
525 nnSubsetInds = self.
nnInterpIndsnnInterpInds[KeepSearchingInds,:]
526 nnSubsetInds = nnSubsetInds[:,subsetInds]
528 baryWeights[KeepSearchingInds,:] = 0.0
549 x1, y1 = np.zeros(nTargets), np.zeros(nTargets)
550 x2, y2 = d3, np.zeros(nTargets)
551 x3 = (-d1**2 + d2**2 + d3**2) / (2 * d3)
552 radicand = d1**2 - (d3 - x3)**2
557 AspectCheck = (radicand/(d3**2)) >= np.square(minAspectRatio)
558 y3 = np.zeros(nTargets)
559 y3[AspectCheck] = np.sqrt(radicand[AspectCheck])
562 denom = (y2-y3)*(x1-x3) + (x3-x2)*(y1-y3)
563 DeterminantCheck = np.abs(denom) > 0.0
566 KeepGoing = np.logical_and(AspectCheck, DeterminantCheck)
567 if KeepGoing.sum() == 0:
continue
570 x1, y1 = x1[KeepGoing], y1[KeepGoing]
571 x2, y2 = x2[KeepGoing], y2[KeepGoing]
572 x3, y3 = x3[KeepGoing], y3[KeepGoing]
573 denom = denom[KeepGoing]
574 KeepSearchingInds = KeepSearchingInds[KeepGoing]
575 nnSubsetInds = nnSubsetInds[KeepGoing,:]
577 nTargets = len(KeepSearchingInds)
580 self.
triangleAreatriangleArea[KeepSearchingInds] = 0.5 * d3 * y3
581 self.
aspectRatioaspectRatio[KeepSearchingInds] = y3 / d3
586 XTarget = self.
XOutXOut[KeepSearchingInds]
587 YTarget = self.
YOutYOut[KeepSearchingInds]
588 ZTarget = self.
ZOutZOut[KeepSearchingInds]
590 X1 = self.
XInXIn[nnSubsetInds[:,0]]
591 Y1 = self.
YInYIn[nnSubsetInds[:,0]]
592 Z1 = self.
ZInZIn[nnSubsetInds[:,0]]
594 X2 = self.
XInXIn[nnSubsetInds[:,1]]
595 Y2 = self.
YInYIn[nnSubsetInds[:,1]]
596 Z2 = self.
ZInZIn[nnSubsetInds[:,1]]
598 X3 = self.
XInXIn[nnSubsetInds[:,2]]
599 Y3 = self.
YInYIn[nnSubsetInds[:,2]]
600 Z3 = self.
ZInZIn[nnSubsetInds[:,2]]
613 Nx, Ny, Nz = np.cross(
614 np.array([D3x, D3y, D3z]),
615 np.array([D2x, D2y, D2z]),
631 c = np.abs(np.array([L1x*Nx, L1y*Ny, L1z*Nz]).sum(axis=0))
636 XTarget_ = XTarget - c * Nx
637 YTarget_ = YTarget - c * Ny
638 ZTarget_ = ZTarget - c * Nz
650 x = (-l2**2 + l1**2 + d3**2) / (2 * d3)
651 radicand = l2**2 - (d3 - x)**2
655 ValidY = (radicand >= 0.0)
656 if ValidY.sum() == 0:
continue
658 y = np.zeros(nTargets)
659 y[ValidY] = np.sqrt(radicand[ValidY])
661 w1 = ((y2-y3)*(x-x3) + (x3-x2)*(y-y3)) / denom
662 w2 = ((y3-y1)*(x-x3) + (x1-x3)*(y-y3)) / denom
665 KeepSearchingInds = KeepSearchingInds[ValidY]
668 self.
determinantdeterminant[KeepSearchingInds] = denom[ValidY]
669 self.
ycoordycoord[KeepSearchingInds] = y[ValidY]
671 baryWeights[KeepSearchingInds,subsetInds[0]] = w1
672 baryWeights[KeepSearchingInds,subsetInds[1]] = w2
673 baryWeights[KeepSearchingInds,subsetInds[2]] = 1. - (w1 + w2)
677 for kk
in KeepSearchingInds:
678 minBaryCheck[kk] = baryWeights[kk,:].min() >= 0.0
679 maxBaryCheck[kk] = baryWeights[kk,:].max() <= 1.0
and baryWeights[kk,:].max() > 0.0
681 allChecks = np.logical_and(minBaryCheck, maxBaryCheck)
683 assert np.all(allChecks), \
685 baryWeights checks not satisfied for '''+str(self.
nOutnOut - allChecks.sum())+
' of '+str(self.
nOutnOut)+
''' target locations
686 --> try increasing nInterpPoints
691 assert isinstance(fIn, Iterable)
and \
692 fIn.shape == self.
XInXIn.shape,
'InterpolateCartesian::apply: fIn must have same shape as original XIn'
698 elif isinstance(OutInds, Iterable):
712 def __init__(self, LonIn, LatIn, nInterpPoints = 5,
713 weightMethod = 'unstinterp',
714 distanceMethod = 'greatcircle',
716 calculateDiagnostics = False):
717 self.
LatInLatIn = LatIn
718 self.
LonInLonIn = LonIn
719 self.
RadiusRadius = Radius
721 super().
__init__(XIn, YIn, ZIn, nInterpPoints,
724 calculateDiagnostics,
736 for kk, (nnInds, lon, lat)
in enumerate(
737 list(zip(self.
nnInterpIndsnnInterpInds, LonOut, LatOut))):
740 self.
LonInLonIn[nnInds], self.
LatInLatIn[nnInds],
744 if len(self.
nnInterpIndsnnInterpInds) != len(LatOut)
or updateNeighbors:
750 self.
LonInLonIn[Inds1], self.
LatInLatIn[Inds1],
751 self.
LonInLonIn[Inds2], self.
LatInLatIn[Inds2],
757 calculates cartesion coordinates from longitude and latitude
758 of a point on a sphere with radius R
760 lon and lat are in radians
762 x = R * np.cos(lat) * np.cos(lon)
763 y = R * np.cos(lat) * np.sin(lon)
768 return np.sqrt((X2 - X1)**2 + (Y2 - Y1)**2 + (Z2 - Z1)**2)
778 if isinstance(lat1, Iterable):
779 assert isinstance(lon1, Iterable),
'lon1 must be same type as lat1'
780 assert len(lon1) == len(lat1),
'lon1 must be same size as lat1'
781 if isinstance(lat2, Iterable):
782 assert isinstance(lon2, Iterable),
'lon2 must be same type as lat2'
783 assert len(lon2) == len(lat2),
'lon2 must be same size as lat2'
784 if isinstance(lat1, Iterable)
and isinstance(lat2, Iterable):
785 assert len(lat1) == len(lat2),
'lat1 must be same size as lat2'
787 dtheta = np.subtract(lat2, lat1)
788 dphi = np.subtract(lon2, lon1)
790 a = np.add(np.square(np.sin(np.divide(dtheta, 2.))),
791 np.multiply(np.multiply(np.cos(lat1), np.cos(lat2)),
792 np.square(np.sin(np.divide(dphi, 2.)))
796 return np.multiply(2.*R, np.arctan2(np.sqrt(a), np.sqrt(1. - a)))
def apply(self, fIn, OutInds=None)
def unstinterpBarycentScalarWeights(self)
def cartesianInDistances(self, Inds1, Inds2)
def unstinterpBarycentWeights(self)
def __init__(self, XIn, YIn, ZIn, nInterpPoints=5, weightMethod='barycentricScalar', distanceMethod='cartesian', calculateDiagnostics=False)
def barycentricWeights(self)
def applyAtIndex(self, fIn, OutInd)
def InDistances(self, Inds1, Inds2)
def unstinterpBarycentCleanupWeights(self)
def initNeighbors(self, XOut, YOut, ZOut)
def initWeights(self, XOut=None, YOut=None, ZOut=None, updateNeighbors=False)
distanceMethodInitialized
def barycentricScalarWeights(self)
def inverseDistanceWeights(self)
def projectedBarycentricWeights(self)
def __init__(self, LonIn, LatIn, nInterpPoints=5, weightMethod='unstinterp', distanceMethod='greatcircle', Radius=1., calculateDiagnostics=False)
def initNeighbors(self, LonOut, LatOut)
def greatcircleInDistances(self, Inds1, Inds2)
def initWeights(self, LonOut, LatOut, updateNeighbors=False)
def CartesianDistance(X1, X2, Y1, Y2, Z1, Z2)
def HaversineDistance(lon1, lat1, lon2, lat2, R=1.)
def LonLat2Cartesian(lon, lat, R=1.)