MPAS-JEDI
Interpolate.py
Go to the documentation of this file.
1 #!/usr/bin/env python3
2 
3 from collections.abc import Iterable
4 from copy import deepcopy
5 import os
6 import itertools
7 import numpy as np
8 from scipy.spatial import cKDTree
9 
10 class InterpolateCartesian:
11  eps = 1.e-10
12  def __init__(self, XIn, YIn, ZIn, nInterpPoints = 5,
13  weightMethod = 'barycentricScalar',
14  distanceMethod = 'cartesian',
15  calculateDiagnostics = False):
16  assert len(XIn) == len(YIn), 'InterpolateCartesian: input coordinates must be identical size'
17  assert len(XIn) == len(ZIn), 'InterpolateCartesian: input coordinates must be identical size'
18  self.calculateDiagnosticscalculateDiagnostics = calculateDiagnostics
19 
20  # init weight method
21  weightMethods = {
22  'unstinterpScalar': {
23  'method': self.unstinterpBarycentScalarWeightsunstinterpBarycentScalarWeightsunstinterpBarycentScalarWeights,
24  'minInterpPoints': 3,
25  },
26  'unstinterp': {
27  'method': self.unstinterpBarycentWeightsunstinterpBarycentWeightsunstinterpBarycentWeights,
28  'minInterpPoints': 3,
29  },
30  'inverseD': {
31  'method': self.inverseDistanceWeightsinverseDistanceWeightsinverseDistanceWeights,
32  'minInterpPoints': 3,
33  },
34  'barycentricScalar': {
35  'method': self.barycentricScalarWeightsbarycentricScalarWeightsbarycentricScalarWeights,
36  'minInterpPoints': 4,
37  },
38  'barycentric': {
39  'method': self.barycentricWeightsbarycentricWeightsbarycentricWeights,
40  'minInterpPoints': 4,
41  },
42  'pbarycentric': {
43  'method': self.projectedBarycentricWeightsprojectedBarycentricWeightsprojectedBarycentricWeights,
44  'minInterpPoints': 4,
45  'distanceMethod': 'cartesian',
46  },
47  }
48  assert weightMethod in list(weightMethods.keys()), \
49  'InterpolateCartesian: '+weightMethod+' is not one of the available weightMethods'
50 
51  self.weightMethodweightMethod = weightMethods[weightMethod]['method']
52 
53  self.minInterpPointsminInterpPoints = weightMethods[weightMethod]['minInterpPoints']
54 
55  assert nInterpPoints >= self.minInterpPointsminInterpPoints, \
56  'InterpolateCartesian: '+weightMethod+' weightMethod requires nInterpPoints > '+str(self.minInterpPointsminInterpPoints)
57 
58  # init distanceMethod
59  self.distanceMethodsdistanceMethods = {
60  'cartesian': self.cartesianInDistancescartesianInDistancescartesianInDistances,
61  }
62  self.distanceMethoddistanceMethod = weightMethods[weightMethod].get(
63  'distanceMethod', distanceMethod)
64  self.distanceMethodInitializeddistanceMethodInitialized = False
65 
66  # init input coordinates
67  self.nInnIn = len(XIn)
68  self.XInXIn = XIn
69  self.YInYIn = YIn
70  self.ZInZIn = ZIn
71 
72  XYZ = np.empty((self.nInnIn, 3))
73  for ii in np.arange(0, self.nInnIn):
74  XYZ[ii,:] = np.asarray([self.XInXIn[ii], self.YInYIn[ii], self.ZInZIn[ii]])
75  self.ScaleScale = np.mean(np.sqrt(np.square(XYZ).sum(axis=1)))
76 
77  self.TreeInTreeIn = cKDTree(list(zip(XIn, YIn, ZIn)))
78  self.nInterpPointsnInterpPoints = nInterpPoints
79  self.nnInterpIndsnnInterpInds = []
80 
81  def initNeighbors(self, XOut, YOut, ZOut):
82  self.XOutXOut = XOut
83  self.YOutYOut = YOut
84  self.ZOutZOut = ZOut
85  self.nOutnOut = len(XOut)
86  self.nnInterpDistances, self.nnInterpIndsnnInterpInds = \
87  self.TreeInTreeIn.query(
88  list(zip(XOut, YOut, ZOut)),
89  k = self.nInterpPointsnInterpPoints
90  )
91 
92  def InDistances(self, Inds1, Inds2):
93  if not self.distanceMethodInitializeddistanceMethodInitialized:
94  assert self.distanceMethoddistanceMethod in list(self.distanceMethodsdistanceMethods.keys()), \
95  'InterpolateCartesian: '+distanceMethod+' is not one of the available distanceMethods'
96  self.InDistanceFunctionInDistanceFunction = self.distanceMethodsdistanceMethods[self.distanceMethoddistanceMethod]
97  self.distanceMethodInitializeddistanceMethodInitialized = True
98  return self.InDistanceFunctionInDistanceFunction(Inds1, Inds2)
99 
100  def cartesianInDistances(self, Inds1, Inds2):
101  # caclculates distances between input nodes for two sets of indices
102  # Inds1, Inds2 may be scalars or arrays
103  # return cartesian distance
104  # + scalar if Inds1 and Inds2 are scalars
105  # + otherwise same shape as Inds1 and/or Inds2
106 
107  if isinstance(Inds1, Iterable) and isinstance(Inds2, Iterable):
108  assert len(Inds1) == len(Inds2), 'Inds1 must be same size as Inds2'
109 
110  X1 = self.XInXIn[Inds1]
111  Y1 = self.YInYIn[Inds1]
112  Z1 = self.ZInZIn[Inds1]
113 
114  X2 = self.XInXIn[Inds2]
115  Y2 = self.YInYIn[Inds2]
116  Z2 = self.ZInZIn[Inds2]
117 
118  return CartesianDistance(X1, X2, Y1, Y2, Z1, Z2)
119 
120  def initWeights(self, XOut=None, YOut=None, ZOut=None,
121  updateNeighbors = False):
122  if XOut is not None:
123  assert len(XOut) == len(YOut), 'InterpolateCartesian::initWeights: output coordinates must be identical size'
124  assert len(XOut) == len(ZOut), 'InterpolateCartesian::initWeights: output coordinates must be identical size'
125  if len(self.nnInterpIndsnnInterpInds) != len(XOut) or updateNeighbors:
126  self.initNeighborsinitNeighborsinitNeighbors(XOut, YOut, ZOut)
127  self.weightMethodweightMethod()
128 
130  self.nnInterpWeightsnnInterpWeights = np.zeros((self.nOutnOut, self.nInterpPointsnInterpPoints))
131  for kk, nnDistances in enumerate(self.nnInterpDistances):
132  if nnDistances.min() < self.epseps:
133  self.nnInterpWeightsnnInterpWeights[kk,np.argmin(nnDistances)] = 1.0
134  else:
135  self.nnInterpWeightsnnInterpWeights[kk,:] = 1.0 / nnDistances
136  # self.nnInterpWeights[kk,:] = 1.0 / np.square(nnDistances)
137 
138  nnInterpWeightSums = np.sum(self.nnInterpWeightsnnInterpWeights, axis=1)
139  for k in np.arange(0, self.nnInterpWeightsnnInterpWeights.shape[1]):
140  self.nnInterpWeightsnnInterpWeights[:,k] = np.divide(self.nnInterpWeightsnnInterpWeights[:,k], nnInterpWeightSums)
141 
143  # calculate weights
144  self.nnInterpWeightsnnInterpWeights = np.zeros((self.nOutnOut, self.nInterpPointsnInterpPoints))
145  bw = np.empty(self.nInterpPointsnInterpPoints)
146  masks = np.logical_not(np.identity(self.nInterpPointsnInterpPoints))
147  for kk, (nnInds, nnDistances) in enumerate(
148  list(zip(self.nnInterpIndsnnInterpInds, self.nnInterpDistances))):
149  if nnDistances.min()*self.ScaleScale < self.epseps:
150  self.nnInterpWeightsnnInterpWeights[kk,np.argmin(nnDistances)] = 1.0
151  else:
152  bw[:] = 0.0
153  for jj, (nnInd, nnDistance, mask) in enumerate(
154  list(zip(nnInds, nnDistances, masks))):
155  otherDistances = self.InDistancesInDistancesInDistances(nnInd, nnInds[mask])
156  wprod = np.prod(otherDistances)
157  bw[jj] = 1.0 / np.prod(otherDistances)
158 
159  bsw = 0.
160  for jj, (nnInd, nnDistance) in enumerate(
161  list(zip(nnInds, nnDistances))):
162  bsw += bw[jj] / nnDistance
163 
164  self.nnInterpWeightsnnInterpWeights[kk,:] = (bw / nnDistances) / bsw
165 
167  # calculate weights
168  self.nnInterpWeightsnnInterpWeights = np.zeros((self.nOutnOut, self.nInterpPointsnInterpPoints))
169  unstWeights = np.empty(self.nInterpPointsnInterpPoints)
170  masks = np.logical_not(np.identity(self.nInterpPointsnInterpPoints))
171  for kk, (nnInds, nnDistances) in enumerate(
172  list(zip(self.nnInterpIndsnnInterpInds, self.nnInterpDistances))):
173  if nnDistances.min()*self.ScaleScale < self.epseps:
174  self.nnInterpWeightsnnInterpWeights[kk,np.argmin(nnDistances)] = 1.0
175  else:
176  unstWeights[:] = 0.0
177  for jj, (nnInd, nnDistance, mask) in enumerate(
178  list(zip(nnInds, nnDistances, masks))):
179  otherDistances = self.InDistancesInDistancesInDistances(nnInd, nnInds[mask])
180  unstWeights[jj] = 1.0 / np.prod(otherDistances) / nnDistance
181  self.nnInterpWeightsnnInterpWeights[kk,:] = unstWeights / unstWeights.sum()
182 
184  # calculate weights
185  unstWeights = np.zeros((self.nOutnOut, self.nInterpPointsnInterpPoints))
186  allOutInds = np.arange(0, self.nOutnOut)
187 
188  # handle target locations that are aligned with an input node
189  OnNode = self.nnInterpDistances.min(axis=1)*self.ScaleScale < self.epseps
190  OnNodeInds = allOutInds[OnNode]
191  minInds = np.argmin(self.nnInterpDistances[OnNodeInds,:], axis=1)
192  for (kk, minInd) in list(zip(OnNodeInds, minInds)):
193  unstWeights[kk, minInd] = 1.0
194 
195  # handle target locations that are not aligned with any input nodes
196  OffNodeInds = allOutInds[np.logical_not(OnNode)]
197  otherNodesMasks = np.logical_not(np.identity(self.nInterpPointsnInterpPoints))
198  otherNodesMaskInds = []
199  allNodesInds = np.arange(0, self.nInterpPointsnInterpPoints)
200  for otherNodesMask in otherNodesMasks:
201  otherNodesMaskInds.append(allNodesInds[otherNodesMask])
202 
203  unstWeights[OffNodeInds, :] = 1.0 / self.nnInterpDistances[OffNodeInds,:]
204 
205  for jj, otherNodesInds in enumerate(otherNodesMaskInds):
206  for otherNodeInd in otherNodesInds:
207  otherDistances = self.InDistancesInDistancesInDistances(
208  self.nnInterpIndsnnInterpInds[OffNodeInds, jj],
209  self.nnInterpIndsnnInterpInds[OffNodeInds, otherNodeInd]
210  )
211  unstWeights[OffNodeInds, jj] /= otherDistances
212 
213  unstWeightsSum = unstWeights[OffNodeInds].sum(axis=1)
214  for node in np.arange(0, unstWeights.shape[1]):
215  unstWeights[OffNodeInds,node] /= unstWeightsSum
216 
217  self.nnInterpWeightsnnInterpWeights = unstWeights
218 
220  nBaryNodes = 3
221  minAspectRatio = 0.1
222 
223  # setup permutations of local nearest neighbor masks and indices
224  subsetIndsPermutations = []
225  for inds in itertools.combinations(
226  np.arange(0, self.nInterpPointsnInterpPoints), nBaryNodes):
227  subsetIndsPermutations.append(list(inds))
228  subsetIndsPermutations = np.asarray(subsetIndsPermutations)
229 
230  # calculate weights
231  self.nnInterpWeightsnnInterpWeights = np.zeros((self.nOutnOut, self.nInterpPointsnInterpPoints))
232  baryWeights = np.empty(self.nInterpPointsnInterpPoints)
233  for kk, (nnInds, nnDistances) in enumerate(
234  list(zip(self.nnInterpIndsnnInterpInds, self.nnInterpDistances))):
235 
236  # loop over subsets of nn nodes until two conditions are met for this target location
237  # (1) those nodes form a non-zero area triangle
238  # (2) those nodes circumscribe the target location
239  for orderedSubsetInds in subsetIndsPermutations:
240 
241  # Advance the triangle indices by 1
242  # Reduces spurious errors in coarse-to-fine-to-coarse test, by not sure why
243  # TODO: check if errors are caused by using great circle instead of planar distances
244  subsetInds = np.roll(orderedSubsetInds, 1)
245 
246  baryWeights[:] = 0.0
247  nnSubsetInds = nnInds[subsetInds]
248 
249  # Define a triangle with first two input nodes as the base, third node as the apex
250  # + the origin is located at the first node, (x1, y1)
251  # + (x1,y1), (x2,y2), (x3,y3) are the coordinates of the vertices
252  # + d1, d2, d3 are the lengths of the sides of the triangle
253  # + l1, l2, l3 are the distances from the vertices to the target location, (x,y)
254  #
255  # n3
256  # /`.
257  # / `.
258  # / `. d1
259  # d2 / `.
260  # / (x,y) `.
261  # / . `.
262  # /..................`.
263  # n1 d3 n2
264 
265  d1 = self.InDistancesInDistancesInDistances(nnSubsetInds[1], nnSubsetInds[2])
266  d2 = self.InDistancesInDistancesInDistances(nnSubsetInds[0], nnSubsetInds[2])
267  d3 = self.InDistancesInDistancesInDistances(nnSubsetInds[0], nnSubsetInds[1])
268  x1, y1 = 0., 0.
269  x2, y2 = d3, 0.
270  x3 = (-d1**2 + d2**2 + d3**2) / (2 * d3)
271  radicand = d1**2 - (d3 - x3)**2
272  #skip skinny/zero-area triangles with y3 < minAspectRatio * d1
273  # possibly a too-conservative restriction for randomly located mesh points,
274  # but fine for an unstructured mesh that is carefully ordered
275  if (radicand/(d1**2)) < np.square(minAspectRatio):
276  continue
277  y3 = np.sqrt(radicand)
278 
279  # ensure denominator (determinant of transformation matrix) is > 0
280  denom = (y2-y3)*(x1-x3) + (x3-x2)*(y1-y3)
281  if np.abs(denom) == 0.0: continue
282 
283  l1, l2, l3 = nnDistances[subsetInds]
284 
285  x = (-l2**2 + l1**2 + d3**2) / (2 * d3)
286  radicand = l2**2 - (d3 - x)**2
287  if (radicand/(l2**2)) < self.epseps:
288  # this case indicates simple linear interpolation between the first two nodes
289  y = 0.
290  else:
291  y = np.sqrt(radicand)
292 
293  baryWeights[subsetInds[0]] = ((y2-y3)*(x-x3) + (x3-x2)*(y-y3)) / denom
294  baryWeights[subsetInds[1]] = ((y3-y1)*(x-x3) + (x1-x3)*(y-y3)) / denom
295  baryWeights[subsetInds[2]] = 1. - baryWeights[subsetInds[0]] \
296  - baryWeights[subsetInds[1]]
297  # keep the first triangle that circumscribes the target location,
298  # defined as having 0.0 ≤ weights ≤ 1.0
299  minBaryCheck = baryWeights.min() >= 0.0
300  maxBaryCheck = baryWeights.max() <= 1.0 and baryWeights.max() > 0.0
301  if minBaryCheck and maxBaryCheck: break
302 
303  assert minBaryCheck and maxBaryCheck, \
304 '''
305  baryWeights checks not satisfied; try increasing nInterpPoints
306  baryWeights = '''+str(baryWeights)+'''
307  nnInterpDistances = '''+str(nnDistances)+'''
308  nnInds = '''+str(nnInds)+'''
309  denom = '''+str(denom)+'''
310  y = '''+str(y)+'''
311  y1 = '''+str(y1)+'''
312  y2 = '''+str(y2)+'''
313  y3 = '''+str(y3)+'''
314  x = '''+str(x)+'''
315  x1 = '''+str(x1)+'''
316  x2 = '''+str(x2)+'''
317  x3 = '''+str(x3)+'''
318  l1 = '''+str(l1)+'''
319  l2 = '''+str(l2)+'''
320  l3 = '''+str(l3)+'''
321  d1 = '''+str(d1)+'''
322  d1^2 = '''+str(d1**2)+'''
323  (d3-x3)^2 = '''+str((d3 - x3)**2)+'''
324  l2^2 = '''+str(l2**2)+'''
325  (d3-x)^2 = '''+str((d3 - x)**2)+'''
326  d2 = '''+str(d2)+'''
327  d3 = '''+str(d3)+'''
328  LatIn = '''+str(self.LatIn[nnInds]*180.0/np.pi)+'''
329  LonIn = '''+str(self.LonIn[nnInds]*180.0/np.pi)+'''
330  LatIn = '''+str(self.LatIn[nnSubsetInds]*180.0/np.pi)+'''
331  LonIn = '''+str(self.LonIn[nnSubsetInds]*180.0/np.pi)+'''
332 '''
333  self.nnInterpWeightsnnInterpWeights[kk,:] = baryWeights
334 
336  nBaryNodes = 3
337  minAspectRatio = 0.01
338 
339  # Notes:
340  # equilateral triangles; AspectRatio = sqrt(3)/2
341  # square grid cells, isosceles triangles; AspectRatio = sqrt(2)/2
342 
343  baryWeights = np.zeros((self.nOutnOut, self.nInterpPointsnInterpPoints))
344  minBaryCheck = np.full(self.nOutnOut, False)
345  maxBaryCheck = np.full(self.nOutnOut, False)
346  allOutInds = np.arange(0, self.nOutnOut)
347 
348  if self.calculateDiagnosticscalculateDiagnostics:
349  self.combinationUsedcombinationUsed = np.zeros(self.nOutnOut, dtype=int)
350  self.triangleAreatriangleArea = np.zeros(self.nOutnOut)
351  self.determinantdeterminant = np.zeros(self.nOutnOut)
352  self.ycoordycoord = np.zeros(self.nOutnOut)
353  self.aspectRatioaspectRatio = np.zeros(self.nOutnOut)
354 
355  # loop over subsets of nn nodes until two conditions are met for all target locations
356  # (1) those nodes form a non-zero area triangle
357  # (2) those nodes circumscribe the target location
358  # all calculations are vectorized across KeepSearchingInds
359  # the number of remaining target locations decreases as iterations proceed
360  for ii, indsSet in enumerate(itertools.combinations(
361  np.arange(0, self.nInterpPointsnInterpPoints), nBaryNodes)):
362 
363  orderedSubsetInds = np.array(list(indsSet))
364 
365  # Advance the triangle indices by 1
366  # Reduces spurious errors in coarse-to-fine-to-coarse test, by not sure why
367  # TODO: check if errors are caused by using great circle instead of planar distances
368  subsetInds = np.roll(orderedSubsetInds, 1)
369 
370  KeepSearching = np.logical_or(
371  np.logical_not(minBaryCheck),
372  np.logical_not(maxBaryCheck)
373  )
374  KeepSearchingInds = allOutInds[KeepSearching]
375  nTargets = len(KeepSearchingInds)
376  if nTargets == 0: break
377  if self.calculateDiagnosticscalculateDiagnostics:
378  self.combinationUsedcombinationUsed[KeepSearchingInds] = ii+1
379  #print(nTargets, subsetInds)
380 
381  nnSubsetInds = self.nnInterpIndsnnInterpInds[KeepSearchingInds,:]
382  nnSubsetInds = nnSubsetInds[:,subsetInds]
383 
384  baryWeights[KeepSearchingInds,:] = 0.0
385 
386  # Define a triangle with first two input nodes as the base, third node as the apex
387  # + the origin is located at n1 = (x1, y1)
388  # + (x1,y1), (x2,y2), (x3,y3) are the coordinates of the vertices
389  # + d1, d2, d3 are the lengths of the sides of the triangle
390  # + l1, l2, l3 are the distances from the vertices to the target location, (x,y)
391  #
392  # n3
393  # /`.
394  # / `.
395  # / `. d1
396  # d2 / `.
397  # / (x,y) `.
398  # / . `.
399  # /..................`.
400  # n1 d3 n2
401 
402  d1 = self.InDistancesInDistancesInDistances(nnSubsetInds[:,1], nnSubsetInds[:,2])
403  d2 = self.InDistancesInDistancesInDistances(nnSubsetInds[:,0], nnSubsetInds[:,2])
404  d3 = self.InDistancesInDistancesInDistances(nnSubsetInds[:,0], nnSubsetInds[:,1])
405  x1, y1 = np.zeros(nTargets), np.zeros(nTargets)
406  x2, y2 = d3, np.zeros(nTargets)
407  x3 = (-d1**2 + d2**2 + d3**2) / (2 * d3)
408  radicand = d1**2 - (d3 - x3)**2
409 
410  #skip skinny/zero-area triangles with y3 < minAspectRatio * d3
411  # possibly a too-conservative restriction for randomly located mesh points,
412  # but fine for an unstructured mesh that is carefully ordered
413  AspectCheck = (radicand/(d3**2)) >= np.square(minAspectRatio)
414  y3 = np.zeros(nTargets)
415  y3[AspectCheck] = np.sqrt(radicand[AspectCheck])
416 
417  # ensure denominator (determinant of transformation matrix) is > 0
418  denom = (y2-y3)*(x1-x3) + (x3-x2)*(y1-y3)
419  DeterminantCheck = np.abs(denom) > 0.0
420 
421  # only continue calculations for passing triangles
422  KeepGoing = np.logical_and(AspectCheck, DeterminantCheck)
423  if KeepGoing.sum() == 0: continue
424 
425  d3 = d3[KeepGoing]
426  x1, y1 = x1[KeepGoing], y1[KeepGoing]
427  x2, y2 = x2[KeepGoing], y2[KeepGoing]
428  x3, y3 = x3[KeepGoing], y3[KeepGoing]
429  denom = denom[KeepGoing]
430  KeepSearchingInds = KeepSearchingInds[KeepGoing]
431  nTargets = len(KeepSearchingInds)
432 
433  if self.calculateDiagnosticscalculateDiagnostics:
434  self.triangleAreatriangleArea[KeepSearchingInds] = 0.5 * d3 * y3
435  self.aspectRatioaspectRatio[KeepSearchingInds] = y3 / d3
436 
437  l1 = self.nnInterpDistances[KeepSearchingInds,subsetInds[0]]
438  l2 = self.nnInterpDistances[KeepSearchingInds,subsetInds[1]]
439 
440  x = (-l2**2 + l1**2 + d3**2) / (2 * d3)
441  radicand = l2**2 - (d3 - x)**2
442 
443  # y<0 is non-physical
444  # y==0 signifies linear interpolation between the first two nodes
445  ValidY = (radicand >= 0.0)
446  if ValidY.sum() == 0: continue
447 
448  y = np.zeros(nTargets)
449  y[ValidY] = np.sqrt(radicand[ValidY])
450 
451  w1 = ((y2-y3)*(x-x3) + (x3-x2)*(y-y3)) / denom
452  w2 = ((y3-y1)*(x-x3) + (x1-x3)*(y-y3)) / denom
453  w1 = w1[ValidY]
454  w2 = w2[ValidY]
455  KeepSearchingInds = KeepSearchingInds[ValidY]
456 
457  if self.calculateDiagnosticscalculateDiagnostics:
458  self.determinantdeterminant[KeepSearchingInds] = denom[ValidY]
459  self.ycoordycoord[KeepSearchingInds] = y[ValidY]
460 
461  baryWeights[KeepSearchingInds,subsetInds[0]] = w1
462  baryWeights[KeepSearchingInds,subsetInds[1]] = w2
463  baryWeights[KeepSearchingInds,subsetInds[2]] = 1. - (w1 + w2)
464 
465  # keep the first triangle that circumscribes the target location,
466  # defined as having 0.0 ≤ weights ≤ 1.0
467  for kk in KeepSearchingInds:
468  minBaryCheck[kk] = baryWeights[kk,:].min() >= 0.0
469  maxBaryCheck[kk] = baryWeights[kk,:].max() <= 1.0 and baryWeights[kk,:].max() > 0.0
470 
471  allChecks = np.logical_and(minBaryCheck, maxBaryCheck)
472 
473  assert np.all(allChecks), \
474 '''
475  baryWeights checks not satisfied for '''+str(self.nOutnOut - allChecks.sum())+' of '+str(self.nOutnOut)+''' target locations
476  --> try increasing nInterpPoints
477 '''
478  self.nnInterpWeightsnnInterpWeights = baryWeights
479 
481  nBaryNodes = 3
482  minAspectRatio = 0.01
483 
484  # Notes:
485  # equilateral triangles; AspectRatio = sqrt(3)/2
486  # square grid cells, isosceles triangles; AspectRatio = sqrt(2)/2
487 
488  baryWeights = np.zeros((self.nOutnOut, self.nInterpPointsnInterpPoints))
489  minBaryCheck = np.full(self.nOutnOut, False)
490  maxBaryCheck = np.full(self.nOutnOut, False)
491  allOutInds = np.arange(0, self.nOutnOut)
492 
493  if self.calculateDiagnosticscalculateDiagnostics:
494  self.combinationUsedcombinationUsed = np.zeros(self.nOutnOut, dtype=int)
495  self.triangleAreatriangleArea = np.zeros(self.nOutnOut)
496  self.determinantdeterminant = np.zeros(self.nOutnOut)
497  self.ycoordycoord = np.zeros(self.nOutnOut)
498  self.aspectRatioaspectRatio = np.zeros(self.nOutnOut)
499 
500  # loop over subsets of nn nodes until two conditions are met for all target locations
501  # (1) those nodes form a non-zero area triangle
502  # (2) those nodes circumscribe the target location
503  # all calculations are vectorized across KeepSearchingInds
504  # the number of remaining target locations decreases as iterations proceed
505  for ii, indsSet in enumerate(itertools.combinations(
506  np.arange(0, self.nInterpPointsnInterpPoints), nBaryNodes)):
507 
508  orderedSubsetInds = np.array(list(indsSet))
509 
510  #Note: nearest neighbor index rolling is not needed when the target location is projected
511  # to the plane containing the neighbor nodes (triangle)
512  subsetInds = orderedSubsetInds
513 
514  KeepSearching = np.logical_or(
515  np.logical_not(minBaryCheck),
516  np.logical_not(maxBaryCheck)
517  )
518  KeepSearchingInds = allOutInds[KeepSearching]
519  nTargets = len(KeepSearchingInds)
520  if nTargets == 0: break
521  if self.calculateDiagnosticscalculateDiagnostics:
522  self.combinationUsedcombinationUsed[KeepSearchingInds] = ii+1
523  print(nTargets, subsetInds)
524 
525  nnSubsetInds = self.nnInterpIndsnnInterpInds[KeepSearchingInds,:]
526  nnSubsetInds = nnSubsetInds[:,subsetInds]
527 
528  baryWeights[KeepSearchingInds,:] = 0.0
529 
530  # Define a triangle with first two input nodes as the base, third node as the apex
531  # + the origin is located at n1 = (x1, y1)
532  # + (x1,y1), (x2,y2), (x3,y3) are the coordinates of the vertices
533  # + d1, d2, d3 are the lengths of the sides of the triangle
534  # + l1, l2, l3 are the distances from the vertices to the target location, (x,y)
535  #
536  # n3
537  # /`.
538  # / `.
539  # / `. d1
540  # d2 / `.
541  # / (x,y) `.
542  # / . `.
543  # /..................`.
544  # n1 d3 n2
545 
546  d1 = self.InDistancesInDistancesInDistances(nnSubsetInds[:,1], nnSubsetInds[:,2])
547  d2 = self.InDistancesInDistancesInDistances(nnSubsetInds[:,0], nnSubsetInds[:,2])
548  d3 = self.InDistancesInDistancesInDistances(nnSubsetInds[:,0], nnSubsetInds[:,1])
549  x1, y1 = np.zeros(nTargets), np.zeros(nTargets)
550  x2, y2 = d3, np.zeros(nTargets)
551  x3 = (-d1**2 + d2**2 + d3**2) / (2 * d3)
552  radicand = d1**2 - (d3 - x3)**2
553 
554  #skip skinny/zero-area triangles with y3 < minAspectRatio * d3
555  # possibly a too-conservative restriction for randomly located mesh points,
556  # but fine for an unstructured mesh that is carefully ordered
557  AspectCheck = (radicand/(d3**2)) >= np.square(minAspectRatio)
558  y3 = np.zeros(nTargets)
559  y3[AspectCheck] = np.sqrt(radicand[AspectCheck])
560 
561  # ensure denominator (determinant of transformation matrix) is > 0
562  denom = (y2-y3)*(x1-x3) + (x3-x2)*(y1-y3)
563  DeterminantCheck = np.abs(denom) > 0.0
564 
565  # only continue calculations for passing triangles
566  KeepGoing = np.logical_and(AspectCheck, DeterminantCheck)
567  if KeepGoing.sum() == 0: continue
568 
569  d3 = d3[KeepGoing]
570  x1, y1 = x1[KeepGoing], y1[KeepGoing]
571  x2, y2 = x2[KeepGoing], y2[KeepGoing]
572  x3, y3 = x3[KeepGoing], y3[KeepGoing]
573  denom = denom[KeepGoing]
574  KeepSearchingInds = KeepSearchingInds[KeepGoing]
575  nnSubsetInds = nnSubsetInds[KeepGoing,:]
576  #nnSubsetInds = nnSubsetInds[np.arange(0, self.nTarget)[KeepGoing],:]
577  nTargets = len(KeepSearchingInds)
578 
579  if self.calculateDiagnosticscalculateDiagnostics:
580  self.triangleAreatriangleArea[KeepSearchingInds] = 0.5 * d3 * y3
581  self.aspectRatioaspectRatio[KeepSearchingInds] = y3 / d3
582 
583  # project XTarget, YTarget, ZTarget onto plane containing
584  # n1=(X1, Y1, Z1), n2=(X2, Y2, Z2), and n3=(X3, Y3, Z3)
585 
586  XTarget = self.XOutXOut[KeepSearchingInds]
587  YTarget = self.YOutYOut[KeepSearchingInds]
588  ZTarget = self.ZOutZOut[KeepSearchingInds]
589 
590  X1 = self.XInXIn[nnSubsetInds[:,0]]
591  Y1 = self.YInYIn[nnSubsetInds[:,0]]
592  Z1 = self.ZInZIn[nnSubsetInds[:,0]]
593 
594  X2 = self.XInXIn[nnSubsetInds[:,1]]
595  Y2 = self.YInYIn[nnSubsetInds[:,1]]
596  Z2 = self.ZInZIn[nnSubsetInds[:,1]]
597 
598  X3 = self.XInXIn[nnSubsetInds[:,2]]
599  Y3 = self.YInYIn[nnSubsetInds[:,2]]
600  Z3 = self.ZInZIn[nnSubsetInds[:,2]]
601 
602  # define two vectors originating from n1 and extending to n2 and n3
603  D3x = X2 - X1
604  D3y = Y2 - Y1
605  D3z = Z2 - Z1
606 
607  D2x = X3 - X1
608  D2y = Y3 - Y1
609  D2z = Z3 - Z1
610 
611  # find a vector normal to the plane, equal to the cross product
612  # N = D3 X D2
613  Nx, Ny, Nz = np.cross(
614  np.array([D3x, D3y, D3z]),
615  np.array([D2x, D2y, D2z]),
616  axis = 0)
617 
618  # normalize the normal vector
619  # N = N / ||N||
620  NLength = CartesianDistance(Nx, 0, Ny, 0, Nz, 0)
621  Nx = Nx / NLength
622  Ny = Ny / NLength
623  Nz = Nz / NLength
624 
625  # determine the distance between XTarget and the plane
626  # by projecting (T - n1) onto the plane normal vector, N
627  # c = L1 dot N
628  L1x = XTarget - X1
629  L1y = YTarget - Y1
630  L1z = ZTarget - Z1
631  c = np.abs(np.array([L1x*Nx, L1y*Ny, L1z*Nz]).sum(axis=0))
632 
633  # the projected target vector is equal to the original target vector minus
634  # the scaled normal vector from the target vector
635  # T' = T - c * N
636  XTarget_ = XTarget - c * Nx
637  YTarget_ = YTarget - c * Ny
638  ZTarget_ = ZTarget - c * Nz
639 
640  l1 = CartesianDistance(
641  XTarget_, X1,
642  YTarget_, Y1,
643  ZTarget_, Z1)
644 
645  l2 = CartesianDistance(
646  XTarget_, X2,
647  YTarget_, Y2,
648  ZTarget_, Z2)
649 
650  x = (-l2**2 + l1**2 + d3**2) / (2 * d3)
651  radicand = l2**2 - (d3 - x)**2
652 
653  # y<0 is non-physical
654  # y==0 signifies linear interpolation between the first two nodes
655  ValidY = (radicand >= 0.0)
656  if ValidY.sum() == 0: continue
657 
658  y = np.zeros(nTargets)
659  y[ValidY] = np.sqrt(radicand[ValidY])
660 
661  w1 = ((y2-y3)*(x-x3) + (x3-x2)*(y-y3)) / denom
662  w2 = ((y3-y1)*(x-x3) + (x1-x3)*(y-y3)) / denom
663  w1 = w1[ValidY]
664  w2 = w2[ValidY]
665  KeepSearchingInds = KeepSearchingInds[ValidY]
666 
667  if self.calculateDiagnosticscalculateDiagnostics:
668  self.determinantdeterminant[KeepSearchingInds] = denom[ValidY]
669  self.ycoordycoord[KeepSearchingInds] = y[ValidY]
670 
671  baryWeights[KeepSearchingInds,subsetInds[0]] = w1
672  baryWeights[KeepSearchingInds,subsetInds[1]] = w2
673  baryWeights[KeepSearchingInds,subsetInds[2]] = 1. - (w1 + w2)
674 
675  # keep the first triangle that circumscribes the target location,
676  # defined as having 0.0 ≤ weights ≤ 1.0
677  for kk in KeepSearchingInds:
678  minBaryCheck[kk] = baryWeights[kk,:].min() >= 0.0
679  maxBaryCheck[kk] = baryWeights[kk,:].max() <= 1.0 and baryWeights[kk,:].max() > 0.0
680 
681  allChecks = np.logical_and(minBaryCheck, maxBaryCheck)
682 
683  assert np.all(allChecks), \
684 '''
685  baryWeights checks not satisfied for '''+str(self.nOutnOut - allChecks.sum())+' of '+str(self.nOutnOut)+''' target locations
686  --> try increasing nInterpPoints
687 '''
688  self.nnInterpWeightsnnInterpWeights = baryWeights
689 
690  def apply(self, fIn, OutInds=None):
691  assert isinstance(fIn, Iterable) and \
692  fIn.shape == self.XInXIn.shape, 'InterpolateCartesian::apply: fIn must have same shape as original XIn'
693 
694  if OutInds is None:
695  fOut = np.multiply(
696  fIn[self.nnInterpIndsnnInterpInds],
697  self.nnInterpWeightsnnInterpWeights).sum(axis=1)
698  elif isinstance(OutInds, Iterable):
699  fOut = np.multiply(
700  fIn[self.nnInterpIndsnnInterpInds[OutInds,:]],
701  self.nnInterpWeightsnnInterpWeights[OutInds,:]).sum(axis=1)
702  else:
703  fOut = applyAtIndex(fIn, OutInds)
704  return fOut
705 
706  def applyAtIndex(self, fIn, OutInd):
707  return np.multiply(
708  fIn[self.nnInterpIndsnnInterpInds[OutInd,:]],
709  self.nnInterpWeightsnnInterpWeights[OutInd,:]).sum()
710 
712  def __init__(self, LonIn, LatIn, nInterpPoints = 5,
713  weightMethod = 'unstinterp',
714  distanceMethod = 'greatcircle',
715  Radius = 1.,
716  calculateDiagnostics = False):
717  self.LatInLatIn = LatIn
718  self.LonInLonIn = LonIn
719  self.RadiusRadius = Radius
720  XIn, YIn, ZIn = LonLat2Cartesian(LonIn, LatIn, self.RadiusRadius)
721  super().__init__(XIn, YIn, ZIn, nInterpPoints,
722  weightMethod,
723  distanceMethod,
724  calculateDiagnostics,
725  )
726  self.ScaleScaleScale = self.RadiusRadius
727  self.distanceMethodsdistanceMethods['greatcircle'] = self.greatcircleInDistancesgreatcircleInDistancesgreatcircleInDistances
728 
729  def initNeighbors(self, LonOut, LatOut):
730  XOut, YOut, ZOut = LonLat2Cartesian(LonOut, LatOut, self.RadiusRadius)
731  super().initNeighbors(XOut, YOut, ZOut)
732 
733  if self.distanceMethoddistanceMethoddistanceMethod == 'greatcircle':
734  # find nearest neighbor great circle distances
735  self.nnInterpDistancesnnInterpDistances = np.empty((len(LatOut), self.nInterpPointsnInterpPoints))
736  for kk, (nnInds, lon, lat) in enumerate(
737  list(zip(self.nnInterpIndsnnInterpInds, LonOut, LatOut))):
738  self.nnInterpDistancesnnInterpDistances[kk, :] = HaversineDistance(
739  lon, lat,
740  self.LonInLonIn[nnInds], self.LatInLatIn[nnInds],
741  self.RadiusRadius)
742 
743  def initWeights(self, LonOut, LatOut, updateNeighbors = False):
744  if len(self.nnInterpIndsnnInterpInds) != len(LatOut) or updateNeighbors:
745  self.initNeighborsinitNeighborsinitNeighborsinitNeighborsinitNeighbors(LonOut, LatOut)
746  super().initWeights()
747 
748  def greatcircleInDistances(self, Inds1, Inds2):
749  return HaversineDistance(
750  self.LonInLonIn[Inds1], self.LatInLatIn[Inds1],
751  self.LonInLonIn[Inds2], self.LatInLatIn[Inds2],
752  self.RadiusRadius)
753 
754 
755 def LonLat2Cartesian(lon, lat, R = 1.):
756  '''
757  calculates cartesion coordinates from longitude and latitude
758  of a point on a sphere with radius R
759 
760  lon and lat are in radians
761  '''
762  x = R * np.cos(lat) * np.cos(lon)
763  y = R * np.cos(lat) * np.sin(lon)
764  z = R * np.sin(lat)
765  return x,y,z
766 
767 def CartesianDistance(X1, X2, Y1, Y2, Z1, Z2):
768  return np.sqrt((X2 - X1)**2 + (Y2 - Y1)**2 + (Z2 - Z1)**2)
769 
770 def HaversineDistance(lon1, lat1, lon2, lat2, R = 1.):
771  #https://janakiev.com/blog/gps-points-distance-python/
772  #lon1, lat1 -- radians, scalar or array
773  #lon2, lat2 -- radians, scalar or array
774  #R -- earth radius in meters
775  #returns great circle distance(s)
776  # + scalar if all inputs are scalars
777  # + otherwise same shape as pairs of lat/lon
778  if isinstance(lat1, Iterable):
779  assert isinstance(lon1, Iterable), 'lon1 must be same type as lat1'
780  assert len(lon1) == len(lat1), 'lon1 must be same size as lat1'
781  if isinstance(lat2, Iterable):
782  assert isinstance(lon2, Iterable), 'lon2 must be same type as lat2'
783  assert len(lon2) == len(lat2), 'lon2 must be same size as lat2'
784  if isinstance(lat1, Iterable) and isinstance(lat2, Iterable):
785  assert len(lat1) == len(lat2), 'lat1 must be same size as lat2'
786 
787  dtheta = np.subtract(lat2, lat1)
788  dphi = np.subtract(lon2, lon1)
789 
790  a = np.add(np.square(np.sin(np.divide(dtheta, 2.))),
791  np.multiply(np.multiply(np.cos(lat1), np.cos(lat2)),
792  np.square(np.sin(np.divide(dphi, 2.)))
793  )
794  )
795 
796  return np.multiply(2.*R, np.arctan2(np.sqrt(a), np.sqrt(1. - a)))
def apply(self, fIn, OutInds=None)
Definition: Interpolate.py:690
def cartesianInDistances(self, Inds1, Inds2)
Definition: Interpolate.py:100
def __init__(self, XIn, YIn, ZIn, nInterpPoints=5, weightMethod='barycentricScalar', distanceMethod='cartesian', calculateDiagnostics=False)
Definition: Interpolate.py:15
def applyAtIndex(self, fIn, OutInd)
Definition: Interpolate.py:706
def InDistances(self, Inds1, Inds2)
Definition: Interpolate.py:92
def initNeighbors(self, XOut, YOut, ZOut)
Definition: Interpolate.py:81
def initWeights(self, XOut=None, YOut=None, ZOut=None, updateNeighbors=False)
Definition: Interpolate.py:121
def __init__(self, LonIn, LatIn, nInterpPoints=5, weightMethod='unstinterp', distanceMethod='greatcircle', Radius=1., calculateDiagnostics=False)
Definition: Interpolate.py:716
def initNeighbors(self, LonOut, LatOut)
Definition: Interpolate.py:729
def greatcircleInDistances(self, Inds1, Inds2)
Definition: Interpolate.py:748
def initWeights(self, LonOut, LatOut, updateNeighbors=False)
Definition: Interpolate.py:743
def CartesianDistance(X1, X2, Y1, Y2, Z1, Z2)
Definition: Interpolate.py:767
def HaversineDistance(lon1, lat1, lon2, lat2, R=1.)
Definition: Interpolate.py:770
def LonLat2Cartesian(lon, lat, R=1.)
Definition: Interpolate.py:755