MPAS-JEDI
Analyses.py
Go to the documentation of this file.
1 #!/usr/bin/env python3
2 
3 import basic_plot_functions as bpf
4 import binning_utils as bu
5 import predefined_configs as pconf
6 from collections.abc import Iterable
7 from collections import defaultdict
8 from copy import deepcopy
9 import collections
10 import datetime as dt
11 import diag_utils as du
12 import inspect
13 import logging
14 import multiprocessing as mp
15 import numpy as np
16 from pathlib import Path
17 import plot_utils as pu
18 import re
19 import os
20 import stat_utils as su
21 import StatisticsDatabase as sdb
22 import var_utils as vu
23 
24 bootStrapStats = []
25 for x in su.sampleableAggStats:
26  if x != 'Count': bootStrapStats.append(x)
27 
28 ## plot settings
29 figureFileType = 'pdf' #['pdf','png']
30 
31 interiorLabels = True
32 
33 
34 def anWorkingDir(DiagSpace):
35  return DiagSpace+'_analyses'
36 
37 ###################################
38 ## Base class for all analysisTypes
39 ###################################
40 class AnalysisBase():
41  def __init__(self, db, analysisType, diagnosticGroupings = {}):
42  self.analysisTypeanalysisType = analysisType
43  self.DiagSpaceNameDiagSpaceName = db.DiagSpaceName
44  self.diagnosticGroupingsdiagnosticGroupings = diagnosticGroupings
45 
46  self.loggerlogger = logging.getLogger(__name__+'.'+self.DiagSpaceNameDiagSpaceName+'.'+self.analysisTypeanalysisType)
47 
48  ## Extract useful variables from the database
49  self.dbdb = db
50  self.diagnosticConfigsdiagnosticConfigs = db.diagnosticConfigs
51  self.availableDiagnosticsavailableDiagnostics = list(self.diagnosticConfigsdiagnosticConfigs.keys())
52 
53  self.expNamesexpNames = self.dbdb.expNames
54  self.nExpnExp = len(self.expNamesexpNames)
55  self.cntrlExpNamecntrlExpName = self.dbdb.cntrlExpName
56  self.noncntrlExpNamesnoncntrlExpNames = self.dbdb.noncntrlExpNames
57 
58  self.fcTDeltasfcTDeltas = self.dbdb.fcTDeltas
59  self.fcTDeltas_totminfcTDeltas_totmin = self.dbdb.fcTDeltas_totmin
60  self.fcMapfcMap = list(zip(self.fcTDeltasfcTDeltas, self.fcTDeltas_totminfcTDeltas_totmin))
61  self.nFCnFC = len(self.fcTDeltasfcTDeltas)
62 
63  self.cyDTimescyDTimes = self.dbdb.cyDTimes
64  self.nCYnCY = len(self.cyDTimescyDTimes)
65 
66  self.varNamesvarNames = self.dbdb.varNames
67  self.nVarsnVars = len(self.varNamesvarNames)
68 
69  varLabels = []
70  for (varName, varUnits) in zip(self.varNamesvarNames, self.dbdb.varUnitss):
71  label = varName
72  if varUnits != vu.miss_s:
73  label = label+' ('+varUnits+')'
74  varLabels.append(label)
75  self.varMapvarMap = list(zip(self.varNamesvarNames, varLabels))
76  self.chlistchlist = self.dbdb.chlist
77 
78  self.allBinValsallBinVals = self.dbdb.allBinVals
79  self.binNumValsbinNumVals = self.dbdb.binNumVals
80  self.binNumVals2DasStrbinNumVals2DasStr = self.dbdb.binNumVals2DasStr
81 
82  ## Establish default configuration
83  self.blockingblocking = False
84  self.parallelismparallelism = False
85 
86  # TODO(JJG): decide if nproc is needed
87  # nproc could be used to initialize workers within a single
88  # analysisType to be distributed however they would be most useful.
89  # That would allow for more granularity of computational effort
90  # but requires that analysisType to be "blocking" due to the nature
91  # of multiprocessing Pool's.
92  # self.nproc = nproc
93 
94  self.requiredStatisticsrequiredStatistics = []
95  self.requestAggDFWrequestAggDFW = False
96  self.blankBinMethodFileblankBinMethodFile = bu.identityBinMethod
97 
98  self.subWidthsubWidth = 2.5
99  self.subAspectsubAspect = 1.0
100 
101  self.MAX_FC_SUBFIGSMAX_FC_SUBFIGS = 6
102  self.MAX_FC_LINESMAX_FC_LINES = 6
103 
104  ## Setup paths
105  CWD = os.getcwd()
106  wd = CWD.split('/')[-1]
107  DSSubDir = anWorkingDir(self.DiagSpaceNameDiagSpaceName)
108  self.DiagSpacePathDiagSpacePath = Path('./')
109  if wd != DSSubDir:
110  self.DiagSpacePathDiagSpacePath = self.DiagSpacePathDiagSpacePath/DSSubDir
111  self.myFigPathmyFigPath = self.DiagSpacePathDiagSpacePath/self.analysisTypeanalysisType
112  self.myFigPathmyFigPath.mkdir(parents=True, exist_ok=True)
113 
114  def binMethodFile(self, binMethod, before = True):
115  '''
116  Format the binMethod for file naming
117  '''
118  binMethodFile = ''
119  if binMethod != self.blankBinMethodFileblankBinMethodFile:
120  if before:
121  binMethodFile = '_'+binMethod
122  else:
123  binMethodFile = binMethod+'_'
124 
125  return binMethodFile
126 
127  def fcName(self, diagnosticGroup):
128  '''
129  Format the diagnosticGroup for forecast analysisType's
130  '''
131  fcDiagName = diagnosticGroup
132  if self.fcTDeltasfcTDeltas[-1] > dt.timedelta(0):
133  fcDiagName = fcDiagName.replace('omm','omf')
134  fcDiagName = fcDiagName.replace('omb','omf')
135  fcDiagName = fcDiagName.replace('bmo','fmo')
136  fcDiagName = fcDiagName.replace('mmo','fmo')
137  fcDiagName = fcDiagName.replace('hmo','fmo')
138  fcDiagName = fcDiagName.replace('bak','fc')
139  return fcDiagName
140 
141  def statPlotAttributes(self, diagnosticGroup, statName,
142  allDiagnosticNames = None):
143  '''
144  Define plotting attributes for the combination of diagnosticGroup and statName
145  '''
146  ommDiagnostics = ['omb', 'oma', 'omm', 'omf']
147  mmoDiagnostics = ['bmo', 'amo', 'mmo', 'fmo', 'mmgfsan']
148  truncateDiagnostics = ommDiagnostics+mmoDiagnostics
149  diagnosticGroup_ = diagnosticGroup
150  for diag in truncateDiagnostics:
151  if diag in diagnosticGroup_:
152  diagnosticGroup_ = diag
153 
154  fcDiagName = self.fcNamefcNamefcName(diagnosticGroup_)
155  if statName in ['Count']+du.CRStatNames:
156  statDiagLabel = statName
157  fcstatDiagLabel = statName
158  else:
159  statDiagLabel = statName+'('+diagnosticGroup_+')'
160  fcstatDiagLabel = statName+'('+fcDiagName+')'
161 
162  #These only apply to unbounded quantities (omb, oma, ana/bak for velocity, differences)
163  signDefinite = True
164  allDiagnosticNames_ = deepcopy(allDiagnosticNames)
165  if allDiagnosticNames_ is None:
166  cntrlDiagnosticName = diagnosticGroup_
167  allDiagnosticNames_ = [diagnosticGroup_]
168  else:
169  cntrlDiagnosticName = allDiagnosticNames_[0]
170 
171  for diag in truncateDiagnostics:
172  if diag in cntrlDiagnosticName:
173  cntrlDiagnosticName = diag
174  for idiag, adiag in enumerate(allDiagnosticNames_):
175  if diag in adiag:
176  allDiagnosticNames_[idiag] = diag
177 
178  cntrlExpDiagnosticLabel = expDiagnosticLabel(self.cntrlExpNamecntrlExpName, cntrlDiagnosticName, allDiagnosticNames_)
179  fcstatDiagDiffLabel = statName+'('+fcDiagName+'): [EXP - '+cntrlExpDiagnosticLabel+']'
180  if statName == 'Mean':
181  if diagnosticGroup_ in ommDiagnostics:
182  signDefinite = False
183  fcstatDiagDiffLabel = statName+': ['+cntrlExpDiagnosticLabel+' - EXP]'
184  if diagnosticGroup_ in mmoDiagnostics:
185  signDefinite = False
186  fcstatDiagDiffLabel = statName+': [EXP - '+cntrlExpDiagnosticLabel+']'
187 
188  sciTicks = (statName == 'Count')
189 
190  return statDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, sciTicks, signDefinite
191 
192  def UNIONcntrlANDexpCYDTimes(self, dfw, myLoc = {}):
193  '''
194  Determine the union of cyDTimes available between
195  the control and each other experiment at each fcTDelta
196  '''
197  cntrlLoc = deepcopy(myLoc)
198  cntrlLoc['expName'] = self.cntrlExpNamecntrlExpName
199 
200  expsCYDTimes = {}
201  for fcTDelta in self.fcTDeltasfcTDeltas:
202  cntrlLoc['fcTDelta'] = fcTDelta
203  cntrlCYDTimes = set(dfw.levels('cyDTime', cntrlLoc))
204 
205  expLoc = deepcopy(cntrlLoc)
206  for expName in self.expNamesexpNames:
207  expLoc['expName'] = expName
208  expCYDTimes = set(dfw.levels('cyDTime', expLoc))
209  expsCYDTimes[(expName, fcTDelta)] = list(cntrlCYDTimes & expCYDTimes)
210  if len(cntrlCYDTimes) != len(expCYDTimes):
211  self.loggerlogger.warning(self.cntrlExpNamecntrlExpName+' and '+expName+' have different number of CYDTimes at forecast length ', fcTDelta, ' Only using common CYDTimes for CI calculation.')
212  return expsCYDTimes
213 
214  def analyze(self, workers = None):
215  self.loggerlogger.info('analyze()')
216  if self.blockingblocking:
217  # analyses with internal blocking
218  self.analyze_analyze_analyze_()
219  elif self.parallelismparallelism:
220  # each analysis determines how to split external workers
221  self.analyze_analyze_analyze_(workers)
222  else:
223  # divide workers acros analyses without internal parallelism/blocking
224  workers.apply_async(self.analyze_analyze_analyze_)
225 
226  def analyze_(self, workers = None):
227  '''
228  virtual method
229  '''
230  raise NotImplementedError()
231 
232 
233 def expDiagnosticLabel(expName, diagnosticName, allDiagnosticNames):
234  if len(allDiagnosticNames) > 1:
235  return expName+'-'+diagnosticName
236  else:
237  return expName
238 
239 
240 def categoryBinValsAttributes(dfw, fullBinVar, binMethod, options):
241  '''
242  Utility function for providing an ordered list of
243  pairs of binVals and associated labels for
244  category binMethods in the context of a DFWrapper
245  '''
246 
247  binVar = vu.varDictAll[fullBinVar][1]
248 
249  dbSelect1DBinVals = dfw.levels('binVal')
250  binUnitss = dfw.uniquevals('binUnits')
251  #if (len(binUnitss) == 0 or
252  # len(dbSelect1DBinVals) == 1): return None, None
253  assert (len(binUnitss) != 0 and len(dbSelect1DBinVals) > 0), 'ERROR: categoryBinValsAttributes received invalid binVar/binMethod'
254 
255  binUnits = binUnitss[0]
256 
257  # reorder select1DBinVals to match binMethod definition
258  # TODO(JJG): clean up for readability
259  tmp = deepcopy(pconf.binVarConfigs.get(
260  fullBinVar,{}).get(
261  binMethod,{}).get(
262  'values', dbSelect1DBinVals))
263  select1DBinVals = []
264  if (not isinstance(tmp, Iterable) or
265  isinstance(tmp, str)):
266  select1DBinVals += [tmp]
267  else:
268  select1DBinVals += tmp
269  for Bin in dbSelect1DBinVals:
270  if Bin not in select1DBinVals:
271  select1DBinVals.append(Bin)
272  for Bin in list(select1DBinVals):
273  if Bin not in dbSelect1DBinVals:
274  select1DBinVals.remove(Bin)
275 
276  binTitles = []
277  for binVal in select1DBinVals:
278  if pu.isfloat(binVal) or pu.isint(binVal):
279  t = ' @ '+binVar+'='+binVal
280  if binUnits != vu.miss_s:
281  t = t+' '+binUnits
282  else:
283  t = ' @ '+binVal
284  binTitles.append(t)
285 
286  binValsMap = list(zip(select1DBinVals, binTitles))
287 
288  return binValsMap
289 
290 
291 #=============
292 # 1-D figures
293 #=============
295  '''
296  Base class used to analyze statistics across binMethods with zero-dimensioned or
297  category binValues, e.g., QC flag, named latitude band, cloudiness regime, surface type
298  '''
299  def __init__(self, db, analysisType, diagnosticGroupings):
300  super().__init__(db, analysisType, diagnosticGroupings)
301  self.parallelismparallelismparallelism = True
302  self.maxBinVarTiermaxBinVarTier = 2
303 
304  # default binVar/binMethod combinations
305  self.binVarDictbinVarDict = {
306  (vu.obsVarQC, bu.goodQCMethod): {'binVarTier': 1},
307  (vu.obsVarLat, bu.latbandsMethod): {'binVarTier': 1},
308  (vu.obsVarCldFrac, bu.cloudbandsMethod): {'binVarTier': 1},
309 # (vu.modVarLat, bu.latbandsMethod): {'binVarTier': 1},
310  (vu.noBinVar, bu.noBinMethod): {'binVarTier': 1},
311  (vu.obsRegionBinVar, bu.geoirlatlonboxMethod): {'binVarTier': 2},
312  (vu.modelRegionBinVar, bu.geoirlatlonboxMethod): {'binVarTier': 2},
313  (vu.obsVarPrs, bu.PjetMethod): {'binVarTier': 3},
314  (vu.obsVarAlt, bu.altjetMethod): {'binVarTier': 3},
315  (vu.obsVarLandFrac, bu.surfbandsMethod): {'binVarTier': 3},
316  }
317  self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis = 10 // self.nExpnExp
318 
319  def subplotArrangement(self, binValsMap):
320  # subplot configuration
321  if len(binValsMap) > 1:
322  nxplots = len(binValsMap)
323  nyplots = self.nVarsnVars
324  nsubplots = nxplots * nyplots
325  else:
326  nsubplots = self.nVarsnVars
327  nxplots = np.int(np.ceil(np.sqrt(nsubplots)))
328  nyplots = np.int(np.ceil(np.true_divide(nsubplots, nxplots)))
329 
330  return nxplots, nyplots, nsubplots
331 
332  def analyze_(self, workers = None):
333  useWorkers = (not self.blockingblocking and self.parallelismparallelismparallelism and workers is not None)
334 
335  # TODO(JJG): construct member Diagnostic objects (create new class) from
336  # diagnosticConfigs instead of referencing dictionary
337  # entries below.
338  # TODO(JJG): use same color, vary line style across diagnosticGroupings
339  diagnosticGrouped = {}
340  for diag in self.availableDiagnosticsavailableDiagnostics:
341  diagnosticGrouped[diag] = False
342 
343  diagnosticGroupings = deepcopy(self.diagnosticGroupingsdiagnosticGroupings)
344  for group in list(diagnosticGroupings.keys()):
345  diags = diagnosticGroupings[group]
346  if (len(diags) > self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis or
347  not set(diags).issubset(set(list(self.availableDiagnosticsavailableDiagnostics)))):
348  del diagnosticGroupings[group]
349  continue
350  for diag in diags: diagnosticGrouped[diag] = True
351 
352  for diag in self.availableDiagnosticsavailableDiagnostics:
353  if not diagnosticGrouped[diag]:
354  diagnosticGroupings[diag] = [diag]
355 
356  for diagnosticGroup, diagnosticNames in diagnosticGroupings.items():
357  if len(diagnosticNames) > self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis: continue
358  if len(set(diagnosticNames) & set(self.availableDiagnosticsavailableDiagnostics)) == 0: continue
359  diagnosticConfigs = {}
360  analysisStatistics = set([])
361  for diagnosticName in diagnosticNames:
362  diagnosticConfigs[diagnosticName] = deepcopy(self.diagnosticConfigsdiagnosticConfigs[diagnosticName])
363  analysisStatistics = set(list(analysisStatistics) +
364  diagnosticConfigs[diagnosticName]['analysisStatistics'])
365  if not set(self.requiredStatisticsrequiredStatistics).issubset(analysisStatistics): continue
366 
367  diagLoc = {'diagName': diagnosticNames}
368  diagBinVars = self.dbdb.dfw.levels('binVar', diagLoc)
369  diagBinMethods = self.dbdb.dfw.levels('binMethod', diagLoc)
370  for (fullBinVar, binMethod), options in self.binVarDictbinVarDict.items():
371  if options.get('binVarTier', 10) > self.maxBinVarTiermaxBinVarTier: continue
372  binVar = vu.varDictAll[fullBinVar][1]
373  if (binVar not in diagBinVars or
374  binMethod not in diagBinMethods): continue
375 
376  self.loggerlogger.info(diagnosticGroup+', '+binVar+', '+binMethod)
377 
378  if useWorkers:
379  workers.apply_async(self.innerloopsWrapperinnerloopsWrapperinnerloopsWrapper,
380  args = (diagnosticGroup, diagnosticConfigs, fullBinVar, binMethod, analysisStatistics, options))
381  else:
382  self.innerloopsWrapperinnerloopsWrapperinnerloopsWrapper(
383  diagnosticGroup, diagnosticConfigs, fullBinVar, binMethod, analysisStatistics, options)
384 
386  diagnosticGroup, diagnosticConfigs, fullBinVar, binMethod, analysisStatistics, options):
387 
388  binVar = vu.varDictAll[fullBinVar][1]
389 
390  # narrow mydfwDict by binVar and binMethod to reduce run-time and memory
391  myLoc = {}
392  myLoc['binVar'] = binVar
393  myLoc['binMethod'] = binMethod
394 
395  mydfwDict = {'dfw': self.dbdb.loc(myLoc)}
396 
397  # aggregate statistics when requested
398  if self.requestAggDFWrequestAggDFW:
399  mydfwDict['agg'] = sdb.DFWrapper.fromAggStats(mydfwDict['dfw'], ['cyDTime'])
400  sdb.createORreplaceDerivedDiagnostics(mydfwDict['agg'], diagnosticConfigs)
401 
402  # further narrow mydfwDict by diagName
403  # NOTE: derived diagnostics may require multiple diagName values;
404  # can only narrow by diagName after aggregation
405  myLoc['diagName'] = list(diagnosticConfigs.keys())
406  for key in mydfwDict.keys():
407  mydfwDict[key] = sdb.DFWrapper.fromLoc(mydfwDict[key], myLoc)
408 
409  binValsMap = categoryBinValsAttributes(
410  mydfwDict['dfw'], fullBinVar, binMethod, options)
411 
412  nxplots, nyplots, nsubplots = self.subplotArrangementsubplotArrangementsubplotArrangement(binValsMap)
413 
414  for statName in analysisStatistics:
415  if statName not in options.get('onlyStatNames', analysisStatistics): continue
416 
417  self.innerloopsinnerloopsinnerloops(
418  mydfwDict, diagnosticGroup, myLoc, statName, binValsMap, options,
419  nsubplots, nxplots, nyplots)
420 
421  def innerloops(self,
422  dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options,
423  nsubplots, nxplots, nyplots):
424  '''
425  virtual method
426  '''
427  raise NotImplementedError()
428 
429 
431  '''
432  Creates a timeseries figure between firstCycleDTime and lastCycleDTime
433  for each forecast length between fcTDeltaFirst and fcTDeltaLast
434  - x-axis: cycle initial time
435  - line: per experiment
436  - subplot: combination of DiagSpace variable and binVal
437  - file: combination of binVar, statistic, and FC lead time (if applicable)
438  '''
439  def __init__(self, db, analysisType, diagnosticGroupings):
440  super().__init__(db, analysisType, diagnosticGroupings)
441 
442  self.subWidthsubWidthsubWidth = 1.9
443  self.subAspectsubAspectsubAspect = 0.75
444 
445  def innerloops(self,
446  dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options,
447  nsubplots, nxplots, nyplots):
448 
449  if self.nCYnCY < 2: return
450 
451  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, sciTicks, signDefinite = \
452  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName, myLoc['diagName'])
453 
454  myPath = self.myFigPathmyFigPath/diagnosticGroup
455  myPath.mkdir(parents=True, exist_ok=True)
456 
457  lineLoc = {}
458  axisLimitsLoc = {}
459 
460  #file loop 1
461  for (fcTDelta, fcTDelta_totmin) in self.fcMapfcMap:
462  lineLoc['fcTDelta'] = fcTDelta
463  axisLimitsLoc['fcTDelta'] = fcTDelta
464 
465  # establish a new figure
466  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
467  iplot = 0
468 
469  #subplot loop 1
470  for (varName, varLabel) in self.varMapvarMap:
471  lineLoc['varName'] = varName
472  axisLimitsLoc['varName'] = varName
473 
474  #subplot loop 2
475  for binVal, binTitle in binValsMap:
476  lineLoc['binVal'] = binVal
477  axisLimitsLoc['binVal'] = binVal
478 
479  # use common y-axis limits across axisLimitsLoc database locations
480  if statName == 'Count':
481  dmin = 0.
482  else:
483  dmin = dfwDict['dfw'].min(axisLimitsLoc, statName)
484  dmax = dfwDict['dfw'].max(axisLimitsLoc, statName)
485 
486  # collect statName for all lines on this subplot
487  linesVals = []
488  linesLabel = []
489  linesGroup = []
490  for expName in self.expNamesexpNames:
491  lineLoc['expName'] = expName
492  for diagnosticName in myLoc['diagName']:
493  linesGroup.append(expName)
494  linesLabel.append(expDiagnosticLabel(
495  expName, diagnosticName, myLoc['diagName']))
496 
497  lineLoc['diagName'] = diagnosticName
498 
499  lineCYDTimes = dfwDict['dfw'].levels('cyDTime', lineLoc)
500 
501  lineVals = np.full(self.nCYnCY, np.NaN)
502  cyLoc = deepcopy(lineLoc)
503  for cyDTime in lineCYDTimes:
504  icy = self.cyDTimescyDTimes.index(cyDTime)
505  cyLoc['cyDTime'] = cyDTime
506  lineVals[icy] = dfwDict['dfw'].loc(cyLoc, statName)
507  linesVals.append(lineVals)
508 
509  # define subplot title
510  title = varLabel+binTitle
511 
512  # perform subplot agnostic plotting (all expNames)
513  bpf.plotTimeSeries(
514  fig,
515  self.cyDTimescyDTimes, linesVals, linesLabel,
516  title, bgstatDiagLabel,
517  sciTicks, False, signDefinite,
518  nyplots, nxplots, nsubplots, iplot,
519  dmin = dmin, dmax = dmax,
520  interiorLabels = interiorLabels)
521 
522  iplot = iplot + 1
523 
524  # end binVal loop
525 
526  # end varMap loop
527 
528  # save each figure
529  filename = myPath/('%s%s_TSeries_%smin_%s_%s_%s'%(
530  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']), fcTDelta_totmin,
531  self.DiagSpaceNameDiagSpaceName, diagnosticGroup, statName))
532 
533  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels)
534 
535  # end fcMap loop
536 
537 
539  '''
540  Creates a timeseries figure between fcTDeltaFirst and fcTDeltaLast containing
541  aggregated statistics for the period between firstCycleDTime and lastCycleDTime
542  - x-axis: forecast duration
543  - line: per experiment
544  - subplot: combination of DiagSpace variable and binVal
545  - file: combination of binVar and statistic
546  '''
547  def __init__(self, db, analysisType, diagnosticGroupings):
548  super().__init__(db, analysisType, diagnosticGroupings)
549 
550  self.requestAggDFWrequestAggDFWrequestAggDFW = True
551 
552  self.subWidthsubWidthsubWidth = 1.9
553  self.subAspectsubAspectsubAspect = 0.9
554 
555  def innerloops(self,
556  dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options,
557  nsubplots, nxplots, nyplots):
558 
559  if self.nFCnFC < 2: return
560 
561  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, sciTicks, signDefinite = \
562  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName, myLoc['diagName'])
563 
564  fcDiagName = self.fcNamefcNamefcName(diagnosticGroup)
565  myPath = self.myFigPathmyFigPath/fcDiagName
566  myPath.mkdir(parents=True, exist_ok=True)
567 
568  lineLoc = {}
569  axisLimitsLoc = {}
570 
571  # establish a new figure
572  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
573  iplot = 0
574 
575  #subplot loop 1
576  for (varName, varLabel) in self.varMapvarMap:
577  lineLoc['varName'] = varName
578  axisLimitsLoc['varName'] = varName
579 
580  #subplot loop 2
581  for binVal, binTitle in binValsMap:
582  lineLoc['binVal'] = binVal
583  axisLimitsLoc['binVal'] = binVal
584 
585  # use common y-axis limits across axisLimitsLoc database locations
586  if statName == 'Count':
587  dmin = 0.
588  else:
589  dmin = dfwDict['agg'].min(axisLimitsLoc, statName)
590  dmax = dfwDict['agg'].max(axisLimitsLoc, statName)
591 
592  #collect aggregated statNames, varying across fcTDelta
593  linesVals = []
594  linesLabel = []
595  linesGroup = []
596  for expName in self.expNamesexpNames:
597  lineLoc['expName'] = expName
598  for diagnosticName in myLoc['diagName']:
599  linesGroup.append(expName)
600  linesLabel.append(expDiagnosticLabel(
601  expName, diagnosticName, myLoc['diagName']))
602  lineLoc['diagName'] = diagnosticName
603 
604  lineFCTDeltas = dfwDict['agg'].levels('fcTDelta', lineLoc)
605 
606  lineVals = np.full(self.nFCnFC, np.NaN)
607  fcLoc = deepcopy(lineLoc)
608  for fcTDelta in lineFCTDeltas:
609  ifc = self.fcTDeltasfcTDeltas.index(fcTDelta)
610  fcLoc['fcTDelta'] = fcTDelta
611  lineVals[ifc] = dfwDict['agg'].loc(fcLoc, statName)
612  linesVals.append(lineVals)
613 
614  # define subplot title
615  title = varLabel+binTitle
616 
617  # perform subplot agnostic plotting (all expNames)
618  bpf.plotTimeSeries(
619  fig,
620  self.fcTDeltasfcTDeltas, linesVals, linesLabel,
621  title, fcstatDiagLabel,
622  sciTicks, False, signDefinite,
623  nyplots, nxplots, nsubplots, iplot,
624  dmin = dmin, dmax = dmax,
625  interiorLabels = interiorLabels)
626 
627  iplot = iplot + 1
628 
629  # end statMap loop
630 
631  # end varMap loop
632 
633  # save each figure
634  filename = myPath/('%s%s_TSeries_%s-%smin_%s_%s_%s'%(
635  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']),
636  self.fcTDeltas_totminfcTDeltas_totmin[0], self.fcTDeltas_totminfcTDeltas_totmin[-1],
637  self.DiagSpaceNameDiagSpaceName, fcDiagName, statName))
638 
639  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels)
640 
641 
643  '''
644  Similar to FCAxisExpLines, except
645  - shows difference between experiment(s) and control
646  - control is selected using cntrlExpIndex
647  - statistics are narrowed down by bootStrapStats
648  - confidence intervals (CI) are shown at each lead time
649  - line+shaded region: per experiment
650  - subplot: combination of DiagSpace variable and binVal
651  - file: combination of binVar and statistic
652  '''
653  def __init__(self, db, analysisType, diagnosticGroupings):
654  super().__init__(db, analysisType, diagnosticGroupings)
655 
656  # OPTIONAL: implement fine-grained parallelism for bootStrapping
657  #self.blocking = True
658 
659  self.subWidthsubWidthsubWidth = 1.9
660  self.subAspectsubAspectsubAspect = 0.9
661 
662  for key in self.binVarDictbinVarDict:
663  if 'onlyStatNames' in self.binVarDictbinVarDict[key]:
664  self.binVarDictbinVarDict[key]['onlyStatNames'] += bootStrapStats
665  else:
666  self.binVarDictbinVarDict[key]['onlyStatNames'] = bootStrapStats
667 
668  def innerloops(self,
669  dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options,
670  nsubplots, nxplots, nyplots):
671 
672  if self.nFCnFC < 2: return
673  if self.nExpnExp * len(myLoc['diagName']) < 2: return
674  if self.cntrlExpNamecntrlExpName not in dfwDict['dfw'].levels('expName'): return
675 
676  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, sciTicks, signDefinite = \
677  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName, myLoc['diagName'])
678 
679  fcDiagName = self.fcNamefcNamefcName(diagnosticGroup)
680  myPath = self.myFigPathmyFigPath/fcDiagName
681  myPath.mkdir(parents=True, exist_ok=True)
682 
683  # Only bootstrap over the union of cyDTimes available
684  # from both experiments at each fcTDelta
685  myExpsCYDTimes = self.UNIONcntrlANDexpCYDTimesUNIONcntrlANDexpCYDTimesUNIONcntrlANDexpCYDTimes(dfwDict['dfw'])
686 
687  # establish a new figure
688  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
689  iplot = 0
690 
691  binValLoc = {}
692  #subplot loop 1
693  for (varName, varLabel) in self.varMapvarMap:
694  binValLoc['varName'] = varName
695 
696  #subplot loop 2
697  for binVal, binTitle in binValsMap:
698  binValLoc['binVal'] = binVal
699 
700  # intermediate tempdfw reduces extraction time in inner loops
701  tempdfw = sdb.DFWrapper.fromLoc(dfwDict['dfw'], binValLoc)
702 
703  cntrlLoc = deepcopy(binValLoc)
704  cntrlLoc['expName'] = self.cntrlExpNamecntrlExpName
705 
706  # define subplot title
707  title = varLabel+binTitle
708 
709  linesVals = defaultdict(list)
710  linesLabel = []
711  linesGroup = []
712  cntrlLoc['diagName'] = myLoc['diagName'][0]
713  for expName in self.expNamesexpNames:
714  for diagnosticName in myLoc['diagName']:
715  if (expName == cntrlLoc['expName'] and
716  diagnosticName == cntrlLoc['diagName']): continue
717  linesGroup.append(expName)
718  linesLabel.append(expDiagnosticLabel(
719  expName, diagnosticName, myLoc['diagName']))
720 
721  lineVals = defaultdict(list)
722  for fcTDelta in self.fcTDeltasfcTDeltas:
723  cntrlLoc['cyDTime'] = myExpsCYDTimes[(expName, fcTDelta)]
724  cntrlLoc['fcTDelta'] = fcTDelta
725 
726  expLoc = deepcopy(cntrlLoc)
727  expLoc['diagName'] = diagnosticName
728  expLoc['expName'] = expName
729 
730  X = tempdfw.loc(expLoc)
731  Y = tempdfw.loc(cntrlLoc)
732 
733  ciVals = su.bootStrapClusterFunc(
734  X, Y,
735  n_samples = 10000,
736  statNames = [statName])
737 
738  for trait in su.ciTraits:
739  lineVals[trait] += [ciVals[statName][trait][0]]
740 
741  for trait in su.ciTraits:
742  linesVals[trait].append(lineVals[trait])
743 
744  # use specific y-axis limits for each varName
745  dmin = np.nanmin(linesVals[su.cimin])
746  dmax = np.nanmax(linesVals[su.cimax])
747 
748  # perform subplot agnostic plotting (all expNames)
749  bpf.plotTimeSeries(
750  fig,
751  self.fcTDeltasfcTDeltas, linesVals[su.cimean],
752  linesLabel,
753  title,
754  fcstatDiagDiffLabel,
755  False, False, False,
756  nyplots, nxplots, nsubplots, iplot,
757  linesValsMinCI = linesVals[su.cimin],
758  linesValsMaxCI = linesVals[su.cimax],
759  dmin = dmin, dmax = dmax,
760  lineAttribOffset = 1,
761  interiorLabels = interiorLabels)
762  iplot = iplot + 1
763 
764  # end binValsMap loop
765 
766  # end varName loop
767 
768  # save each figure
769  filename = myPath/('%s%s_TSeries_%s-%smin_%s_%s_%s'%(
770  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']),
771  self.fcTDeltas_totminfcTDeltas_totmin[0], self.fcTDeltas_totminfcTDeltas_totmin[-1],
772  self.DiagSpaceNameDiagSpaceName, fcDiagName, statName))
773 
774  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels)
775 
776 
778  '''
779  Similar to CYAxisExpLines, except
780  each line is for a different forecast lead time and
781  each experiment is in a different file
782  - x-axis: valid time of forecast
783  - line: per FC lead time
784  - subplot: combination of DiagSpace variable and binVal
785  - file: combination of binVar, statistic, and experiment
786  - self.MAX_FC_LINES determines number of FC lead time lines to include
787  '''
788  def __init__(self, db, analysisType, diagnosticGroupings):
789  super().__init__(db, analysisType, diagnosticGroupings)
790 
791  self.subWidthsubWidthsubWidth = 1.9
792  self.subAspectsubAspectsubAspect = 0.75
793 
794  self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis = 1
795 
796  def innerloops(self,
797  dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options,
798  nsubplots, nxplots, nyplots):
799 
800  if self.nFCnFC < 2 or self.nCYnCY < 2: return
801 
802  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, sciTicks, signDefinite = \
803  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName)
804 
805  fcDiagName = self.fcNamefcNamefcName(diagnosticGroup)
806  myPath = self.myFigPathmyFigPath/fcDiagName
807  myPath.mkdir(parents=True, exist_ok=True)
808 
809  lineLoc = {}
810  axisLimitsLoc = {}
811 
812  #file loop 1
813  for expName in self.expNamesexpNames:
814  lineLoc['expName'] = expName
815 
816  # establish a new figure
817  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
818  iplot = 0
819 
820  #subplot loop 1
821  for (varName, varLabel) in self.varMapvarMap:
822  lineLoc['varName'] = varName
823  axisLimitsLoc['varName'] = varName
824 
825  #subplot loop 2
826  for binVal, binTitle in binValsMap:
827  lineLoc['binVal'] = binVal
828  axisLimitsLoc['binVal'] = binVal
829 
830  # use common y-axis limits across axisLimitsLoc database locations
831  if statName == 'Count':
832  dmin = 0.
833  else:
834  dmin = dfwDict['dfw'].min(axisLimitsLoc, statName)
835  dmax = dfwDict['dfw'].max(axisLimitsLoc, statName)
836 
837  # collect statName for all lines on this subplot, letting cyDTime vary
838  xsVals = []
839  linesVals = []
840  self.fcTDeltas_labelsfcTDeltas_labels = []
841  for fcTDelta in self.fcTDeltasfcTDeltas:
842  lineLoc['fcTDelta'] = fcTDelta
843 
844  # calculate valid time for x-axis
845  xVals = []
846  for cyDTime in self.cyDTimescyDTimes:
847  xVals.append(cyDTime+fcTDelta)
848  xsVals.append(xVals)
849 
850  #Setting to avoid over-crowding
851  if self.fcTDeltasfcTDeltas.index(fcTDelta) > (self.MAX_FC_LINESMAX_FC_LINES-1): continue
852 
853  self.fcTDeltas_labelsfcTDeltas_labels.append(
854  pu.timeDeltaTicks(fcTDelta.total_seconds(),0))
855 
856  lineCYDTimes = dfwDict['dfw'].levels('cyDTime', lineLoc)
857 
858  lineVals = np.full(self.nCYnCY, np.NaN)
859  cyLoc = deepcopy(lineLoc)
860  for cyDTime in lineCYDTimes:
861  icy = self.cyDTimescyDTimes.index(cyDTime)
862  cyLoc['cyDTime'] = cyDTime
863  lineVals[icy] = dfwDict['dfw'].loc(cyLoc, statName)
864 
865  linesVals.append(lineVals)
866 
867  # define subplot title
868  title = varLabel+binTitle
869 
870  # perform subplot agnostic plotting (all expNames)
871  bpf.plotTimeSeries(
872  fig,
873  xsVals, linesVals, self.fcTDeltas_labelsfcTDeltas_labels,
874  title, bgstatDiagLabel,
875  sciTicks, False, signDefinite,
876  nyplots, nxplots, nsubplots, iplot,
877  dmin = dmin, dmax = dmax,
878  interiorLabels = interiorLabels)
879  iplot = iplot + 1
880 
881  # end binValsMap loop
882 
883  # end varMap loop
884 
885  expFileName = re.sub('\.', '', re.sub('\s+', '-', expName))
886  filename = myPath/('%s%s_TSeries_%s_%s_%s_%s'%(
887  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']), expFileName,
888  self.DiagSpaceNameDiagSpaceName, fcDiagName, statName))
889 
890  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels)
891 
892  # end expName loop
893 
894 
895 ###########################################
896 ## Figures with individual lines per binVal
897 ###########################################
898 
900  def __init__(self, db, analysisType, diagnosticGroupings):
901  super().__init__(db, analysisType, diagnosticGroupings)
902 
903  # TODO(JJG): allow for multiple binMethods in one figure, such as
904  #self.binVarDict = {
905  # (vu.obsVarQC, [bu.goodQCMethod, bu.badQCMethod]): {
906  # 'onlyStatNames': ['Count'],
907  # },
908  #}
909  # OR if this is the only case for which it's needed
910  # TODO: replace badQCMethod with all-encompassing QC Method, e.g., allQCMethod
911  self.binVarDictbinVarDictbinVarDict = {
912  (vu.obsVarQC, bu.badQCMethod): {
913  'onlyStatNames': ['Count'],
914  'binVarTier': 1,
915  },
916  (vu.obsVarQC, bu.allQCMethod): {
917  'onlyStatNames': ['Count'],
918  'binVarTier': 1,
919  },
920  (vu.obsVarLat, bu.latbandsMethod): {'binVarTier': 1},
921 # (vu.modVarLat, bu.latbandsMethod): {'binVarTier': 1},
922  (vu.obsVarCldFrac, bu.cloudbandsMethod): {'binVarTier': 1},
923  (vu.obsVarLandFrac, bu.surfbandsMethod): {'binVarTier': 3},
924  }
925 
926  def subplotArrangement(self, dummy):
927  # subplot configuration
928  return self.nExpnExp, self.nVarsnVars, self.nExpnExp * self.nVarsnVars
929 
930 
932  '''
933  Similar to CYAxisExpLines, except
934  each line is for a different binVal (e.g., latitude band, cloudiness, etc.)
935  - line: binVals for named bins (e.g., NXTro, Tro, SXTro for latitude)
936  - subplot: column by experiment, row by DiagSpace variable
937  - file: combination of statistic and forecast length
938  '''
939  def __init__(self, db, analysisType, diagnosticGroupings):
940  super().__init__(db, analysisType, diagnosticGroupings)
941 
942  self.subWidthsubWidthsubWidth = 1.9
943  self.subAspectsubAspectsubAspect = 0.75
944 
945  self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis = 1
946 
947  def innerloops(self,
948  dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options,
949  nsubplots, nxplots, nyplots):
950 
951  if self.nCYnCY < 2: return
952 
953  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, sciTicks, signDefinite = \
954  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName)
955 
956 
957  myPath = self.myFigPathmyFigPath/diagnosticGroup
958  myPath.mkdir(parents=True, exist_ok=True)
959 
960  lineLoc = {}
961  binVals = []
962  for binVal, binTitle in binValsMap: binVals.append(binVal)
963  lineLoc['binVal'] = binVals
964 
965  axisLimitsLoc = deepcopy(lineLoc)
966 
967  #file loop 1
968  for (fcTDelta, fcTDelta_totmin) in self.fcMapfcMap:
969  lineLoc['fcTDelta'] = fcTDelta
970  axisLimitsLoc['fcTDelta'] = fcTDelta
971 
972  # establish a new figure
973  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
974 
975  iplot = 0
976 
977  #subplot loop 1
978  for (varName, varLabel) in self.varMapvarMap:
979  lineLoc['varName'] = varName
980  axisLimitsLoc['varName'] = varName
981 
982  # use common y-axis limits across axisLimitsLoc database locations
983  if statName == 'Count':
984  dmin = 0.
985  else:
986  dmin = dfwDict['dfw'].min(axisLimitsLoc, statName)
987  dmax = dfwDict['dfw'].max(axisLimitsLoc, statName)
988 
989  #subplot loop 2
990  for expName in self.expNamesexpNames:
991  lineLoc['expName'] = expName
992 
993  # collect statName for all lines on this subplot, letting cyDTime vary
994  linesVals = []
995  for binVal in binVals:
996  lineLoc['binVal'] = binVal
997  lineCYDTimes = dfwDict['dfw'].levels('cyDTime', lineLoc)
998 
999  lineVals = np.full(self.nCYnCY, np.NaN)
1000  cyLoc = deepcopy(lineLoc)
1001  for cyDTime in lineCYDTimes:
1002  icy = self.cyDTimescyDTimes.index(cyDTime)
1003  cyLoc['cyDTime'] = cyDTime
1004 # print(dfwDict['dfw'].loc(cyLoc, statName))
1005  lineVals[icy] = dfwDict['dfw'].loc(cyLoc, statName)
1006 
1007  linesVals.append(lineVals)
1008 
1009  # end binVal loop
1010 
1011  # define subplot title
1012  title = expName+'\n'+varLabel
1013 
1014  # perform subplot agnostic plotting (all expNames)
1015  bpf.plotTimeSeries(
1016  fig,
1017  self.cyDTimescyDTimes, linesVals, binVals,
1018  title, bgstatDiagLabel,
1019  sciTicks, False, signDefinite,
1020  nyplots, nxplots, nsubplots, iplot,
1021  dmin = dmin, dmax = dmax,
1022  interiorLabels = interiorLabels)
1023 
1024  iplot = iplot + 1
1025 
1026  # end expName Loop
1027 
1028  # end varMap Loop
1029 
1030  filename = myPath/('%s%s_TSeries_%smin_%s_%s_%s'%(
1031  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']),
1032  fcTDelta_totmin, self.DiagSpaceNameDiagSpaceName,
1033  diagnosticGroup, statName))
1034 
1035  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels)
1036 
1037  # end fcMap loop
1038 
1039 
1040 # TODO(JJG): implement FCAxisBinValLines similar to FCAxisExpLines
1041 
1042 
1043 #########################################################
1044 ## Figures with binVal on one axis, i.e., 2D and profiles
1045 #########################################################
1047  '''
1048  Base class used to analyze statistics across binMethods with one-dimensional binValues
1049  that are assigned numerical values, e.g., altitude, pressure, latitude, cloud fraction
1050  '''
1051  def __init__(self, db, analysisType, diagnosticGroupings):
1052  super().__init__(db, analysisType, diagnosticGroupings)
1053  self.parallelismparallelismparallelism = True
1054  self.maxBinVarTiermaxBinVarTier = 1
1055 
1056  # default binVars
1057  self.binVarDictbinVarDict = {
1058  vu.obsVarAlt: {'profilefunc': bpf.plotProfile, 'binVarTier': 1},
1059  vu.obsVarACI: {'profilefunc': bpf.plotSeries, 'binVarTier': 2},
1060  vu.obsVarCldFrac: {'profilefunc': bpf.plotSeries, 'binVarTier': 1},
1061  vu.obsVarLat: {'profilefunc': bpf.plotProfile, 'binVarTier': 1},
1062  vu.obsVarPrs: {'profilefunc': bpf.plotProfile, 'binVarTier': 1},
1063  vu.obsVarSCI: {'profilefunc': bpf.plotSeries, 'binVarTier': 2},
1064 # vu.modVarLat: {'profilefunc': bpf.plotProfile, 'binVarTier': 1},
1065  vu.modVarLev: {'profilefunc': bpf.plotProfile, 'binVarTier': 1},
1066  vu.obsVarGlint: {'profilefunc': bpf.plotSeries, 'binVarTier': 3},
1067  vu.obsVarLandFrac: {'profilefunc': bpf.plotSeries, 'binVarTier': 3},
1068  vu.obsVarLT: {'profilefunc': bpf.plotSeries, 'binVarTier': 3},
1069  vu.obsVarSenZen: {'profilefunc': bpf.plotSeries, 'binbinVarTier': 3},
1070  }
1071  self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis = 10 // self.nExpnExp
1072 
1073  def analyze_(self, workers = None):
1074  useWorkers = (not self.blockingblocking and self.parallelismparallelismparallelism and workers is not None)
1075  diagnosticGrouped = {}
1076  for diag in self.availableDiagnosticsavailableDiagnostics:
1077  diagnosticGrouped[diag] = False
1078 
1079  diagnosticGroupings = deepcopy(self.diagnosticGroupingsdiagnosticGroupings)
1080  for group in list(diagnosticGroupings.keys()):
1081  diags = diagnosticGroupings[group]
1082  if (len(diags) > self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis or
1083  not set(diags).issubset(set(list(self.availableDiagnosticsavailableDiagnostics)))):
1084  del diagnosticGroupings[group]
1085  continue
1086  for diag in diags: diagnosticGrouped[diag] = True
1087 
1088  for diag in self.availableDiagnosticsavailableDiagnostics:
1089  if not diagnosticGrouped[diag]:
1090  diagnosticGroupings[diag] = [diag]
1091 
1092  for diagnosticGroup, diagnosticNames in diagnosticGroupings.items():
1093  if len(diagnosticNames) > self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis: continue
1094  if len(set(diagnosticNames) & set(self.availableDiagnosticsavailableDiagnostics)) == 0: continue
1095  diagnosticConfigs = {}
1096  analysisStatistics = set([])
1097  for diagnosticName in diagnosticNames:
1098  diagnosticConfigs[diagnosticName] = deepcopy(self.diagnosticConfigsdiagnosticConfigs[diagnosticName])
1099  analysisStatistics = set(list(analysisStatistics) +
1100  diagnosticConfigs[diagnosticName]['analysisStatistics'])
1101  if not set(self.requiredStatisticsrequiredStatistics).issubset(analysisStatistics): continue
1102 
1103  diagBinVars = self.dbdb.dfw.levels('binVar', {'diagName': diagnosticNames})
1104 
1105  for fullBinVar, options in self.binVarDictbinVarDict.items():
1106  if options.get('binVarTier', 10) > self.maxBinVarTiermaxBinVarTier: continue
1107  binVar = vu.varDictAll[fullBinVar][1]
1108  if (binVar not in diagBinVars): continue
1109 
1110  binVarLoc = {}
1111  binVarLoc['diagName'] = diagnosticNames
1112  binVarLoc['binVar'] = binVar
1113  binVarLoc['binVal'] = self.binNumVals2DasStrbinNumVals2DasStr
1114 
1115  #Make figures for all binMethods
1116  binMethods = self.dbdb.dfw.levels('binMethod', binVarLoc)
1117  for binMethod in binMethods:
1118 
1119  self.loggerlogger.info(diagnosticGroup+', '+binVar+', '+binMethod)
1120 
1121  if useWorkers:
1122  workers.apply_async(self.innerloopsWrapperinnerloopsWrapperinnerloopsWrapper,
1123  args = (diagnosticGroup, diagnosticConfigs, binVar, binMethod, analysisStatistics, options))
1124  else:
1125  self.innerloopsWrapperinnerloopsWrapperinnerloopsWrapper(
1126  diagnosticGroup, diagnosticConfigs, binVar, binMethod, analysisStatistics, options)
1127 
1129  diagnosticGroup, diagnosticConfigs, binVar, binMethod, analysisStatistics, options):
1130 
1131  myLoc = {}
1132  myLoc['binVar'] = binVar
1133  myLoc['binVal'] = self.binNumVals2DasStrbinNumVals2DasStr
1134  myLoc['binMethod'] = binMethod
1135 
1136  # narrow mydfwDict by binVar, binVal, and binMethod to reduce run-time and memory
1137  mydfwDict = {'dfw': self.dbdb.loc(myLoc)}
1138 
1139  # aggregate statistics when requested
1140  if self.requestAggDFWrequestAggDFW:
1141  mydfwDict['agg'] = sdb.DFWrapper.fromAggStats(mydfwDict['dfw'], ['cyDTime'])
1142  sdb.createORreplaceDerivedDiagnostics(mydfwDict['agg'], diagnosticConfigs)
1143 
1144  # further narrow mydfwDict by diagName
1145  # NOTE: derived diagnostics may require multiple diagName values;
1146  # can only narrow by diagName after aggregation
1147  myLoc['diagName'] = list(diagnosticConfigs.keys())
1148  for key in mydfwDict.keys():
1149  mydfwDict[key] = sdb.DFWrapper.fromLoc(mydfwDict[key], myLoc)
1150 
1151  ## Get all float/int binVals associated with binVar
1152  binVals = mydfwDict['dfw'].levels('binVal')
1153  binUnits = mydfwDict['dfw'].uniquevals('binUnits')[0]
1154 
1155  # assume all bins represent same variable/units
1156  indepLabel = binVar
1157  if binUnits != vu.miss_s:
1158  indepLabel = indepLabel+' ('+binUnits+')'
1159 
1160  # bin info
1161  binNumVals = []
1162  for binVal in binVals:
1163  ibin = self.allBinValsallBinVals.index(binVal)
1164  binNumVals.append(self.binNumValsbinNumVals[ibin])
1165 
1166  # invert independent variable axis for pressure bins
1167  pressure_dict = vu.varDictAll.get(vu.obsVarPrs,['',''])
1168  invert_ind_axis = (pressure_dict[1] == binVar)
1169 
1170  # sort bins by numeric value
1171  indices = list(range(len(binNumVals)))
1172  indices.sort(key=binNumVals.__getitem__)
1173  binNumVals = list(map(binNumVals.__getitem__, indices))
1174  binVals = list(map(binVals.__getitem__, indices))
1175 
1176  myBinConfigs = {
1177  'str': binVals,
1178  'values': binNumVals,
1179  'indepLabel': indepLabel,
1180  'invert_ind_axis': invert_ind_axis,
1181  }
1182  if len(binVals) < 2: return
1183 
1184  # only analyze variables that have non-zero Count when sliced by myLoc
1185  nVarsLoc = 0
1186  varMapLoc = []
1187  for (varName, varLabel) in self.varMapvarMap:
1188  countDF = mydfwDict['dfw'].loc({'varName': varName}, 'Count')
1189  if countDF.shape[0] > 0:
1190  counts = countDF.to_numpy()
1191  if np.nansum(counts) > 0:
1192  nVarsLoc += 1
1193  varMapLoc.append((varName, varLabel))
1194 
1195  for statName in analysisStatistics:
1196  if statName not in options.get('onlyStatNames', analysisStatistics): continue
1197 
1198  self.innerloopsinnerloopsinnerloops(
1199  mydfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options)
1200 
1201  def innerloops(self,
1202  dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options):
1203  '''
1204  virtual method
1205  '''
1206  raise NotImplementedError()
1207 
1208 
1210  '''
1211  Creates raster maps with binVar binVals on y-axis
1212  - only applicable to binned diagnostics (e.g., vertical dimension, latitude, zenith angle)
1213  - subplot: column by experiment, row by DiagSpace variable
1214  - file: combination of binVar, binMethod, statistic, and FC lead time
1215  '''
1216  def __init__(self, db, analysisType, diagnosticGroupings):
1217  super().__init__(db, analysisType, diagnosticGroupings)
1218 
1219  self.subWidthsubWidthsubWidth = 2.4
1220  self.subAspectsubAspectsubAspect = 0.65
1221 
1222  self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis = 1
1223 
1224  def innerloops(self,
1225  dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options):
1226 
1227  if self.nCYnCY < 2: return
1228 
1229  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, scilogScale, signDefinite = \
1230  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName)
1231 
1232  myPath = self.myFigPathmyFigPath/diagnosticGroup
1233  myPath.mkdir(parents=True, exist_ok=True)
1234 
1235  nxplots = self.nExpnExp
1236  nyplots = nVarsLoc
1237  nsubplots = nxplots * nyplots
1238 
1239  planeLoc = {}
1240  axisLimitsLoc = {}
1241 
1242  #file loop 1
1243  for (fcTDelta, fcTDelta_totmin) in self.fcMapfcMap:
1244  planeLoc['fcTDelta'] = fcTDelta
1245 
1246  # establish a new figure
1247  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
1248 
1249  iplot = 0
1250 
1251  #subplot loop 1
1252  for (varName, varLabel) in varMapLoc:
1253  planeLoc['varName'] = varName
1254  axisLimitsLoc['varName'] = varName
1255 
1256  # use common c-axis limits across axisLimitsLoc database locations
1257  if statName == 'Count':
1258  dmin = 0.
1259  else:
1260  dmin = dfwDict['dfw'].min(axisLimitsLoc, statName)
1261  dmax = dfwDict['dfw'].max(axisLimitsLoc, statName)
1262 
1263  #subplot loop 2
1264  # letting cyDTime and binVal vary
1265  for expName in self.expNamesexpNames:
1266  planeLoc['expName'] = expName
1267  planeCYDTimes = dfwDict['dfw'].levels('cyDTime', planeLoc)
1268 
1269  planeVals = np.full((len(myBinConfigs['str']), self.nCYnCY), np.NaN)
1270  binLoc = deepcopy(planeLoc)
1271  for ibin, binVal in enumerate(myBinConfigs['str']):
1272  binLoc['binVal'] = binVal
1273  tmp = dfwDict['dfw'].loc(binLoc, statName).to_numpy()
1274  for jcy, cyDTime in enumerate(planeCYDTimes):
1275  if jcy > len(tmp)-1: continue
1276  icy = self.cyDTimescyDTimes.index(cyDTime)
1277  planeVals[ibin, icy] = tmp[jcy]
1278 
1279  # define subplot title
1280  title = expName+'\n'+varLabel
1281 
1282  # perform subplot agnostic plotting (all expNames)
1283  bpf.plotTimeSeries2D(
1284  fig,
1285  self.cyDTimescyDTimes, myBinConfigs['values'], planeVals,
1286  title, bgstatDiagLabel,
1287  scilogScale, scilogScale, signDefinite,
1288  myBinConfigs['indepLabel'], myBinConfigs['invert_ind_axis'],
1289  nyplots, nxplots, nsubplots, iplot,
1290  dmin = dmin, dmax = dmax,
1291  interiorLabels = interiorLabels)
1292 
1293  iplot = iplot + 1
1294 
1295  filename = myPath/('%s%s_BinValAxisTSeries_%smin_%s_%s_%s'%(
1296  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']),
1297  fcTDelta_totmin, self.DiagSpaceNameDiagSpaceName,
1298  diagnosticGroup, statName))
1299 
1300  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels)
1301 
1302  # end fcTDelta loop
1303 
1304 
1306  '''
1307  Creates raster maps with binVar binVals on y-axis
1308  - only applicable to binned diagnostics (e.g., vertical dimension, latitude, zenith angle)
1309  - subplot: column by experiment, row by DiagSpace variable
1310  - file: combination of binVar, binMethod, and statistic
1311  '''
1312 
1313  def __init__(self, db, analysisType, diagnosticGroupings):
1314  super().__init__(db, analysisType, diagnosticGroupings)
1315 
1316  self.requestAggDFWrequestAggDFWrequestAggDFW = True
1317 
1318  self.subWidthsubWidthsubWidth = 2.4
1319  self.subAspectsubAspectsubAspect = 0.55
1320 
1321  self.maxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysismaxDiagnosticsPerAnalysis = 1
1322 
1323  def innerloops(self,
1324  dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options):
1325 
1326  if self.nFCnFC < 2: return
1327 
1328  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, scilogScale, signDefinite = \
1329  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName)
1330 
1331  fcDiagName = self.fcNamefcNamefcName(diagnosticGroup)
1332  myPath = self.myFigPathmyFigPath/fcDiagName
1333  myPath.mkdir(parents=True, exist_ok=True)
1334 
1335  nxplots = self.nExpnExp
1336  nyplots = nVarsLoc
1337  nsubplots = nxplots * nyplots
1338 
1339  planeLoc = {}
1340  axisLimitsLoc = {}
1341 
1342  # establish a new figure
1343  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
1344 
1345  iplot = 0
1346  #subplot loop 1
1347  for (varName, varLabel) in varMapLoc:
1348  planeLoc['varName'] = varName
1349  axisLimitsLoc['varName'] = varName
1350 
1351  # use common c-axis limits across axisLimitsLoc database locations
1352  if statName == 'Count':
1353  dmin = 0.
1354  else:
1355  dmin = dfwDict['agg'].min(axisLimitsLoc, statName)
1356  dmax = dfwDict['agg'].max(axisLimitsLoc, statName)
1357 
1358  #subplot loop 2
1359  #collect aggregated statName, varying across fcTDelta+binVal
1360  for expName in self.expNamesexpNames:
1361  planeLoc['expName'] = expName
1362  planeFCTDeltas = dfwDict['agg'].levels('fcTDelta', planeLoc)
1363 
1364  planeVals = np.full((len(myBinConfigs['str']), self.nFCnFC), np.NaN)
1365  binLoc = deepcopy(planeLoc)
1366  for ibin, binVal in enumerate(myBinConfigs['str']):
1367  binLoc['binVal'] = binVal
1368  tmp = dfwDict['agg'].loc(binLoc, statName).to_numpy()
1369  for jfc, fcTDelta in enumerate(planeFCTDeltas):
1370  if jfc > len(tmp)-1: continue
1371  ifc = self.fcTDeltasfcTDeltas.index(fcTDelta)
1372  planeVals[ibin, ifc] = tmp[jfc]
1373 
1374  # define subplot title
1375  title = expName+'\n'+varLabel
1376 
1377  # perform subplot agnostic plotting (all expNames)
1378  bpf.plotTimeSeries2D(
1379  fig,
1380  self.fcTDeltasfcTDeltas, myBinConfigs['values'], planeVals,
1381  title, fcstatDiagLabel,
1382  scilogScale, scilogScale, signDefinite,
1383  myBinConfigs['indepLabel'], myBinConfigs['invert_ind_axis'],
1384  nyplots, nxplots, nsubplots, iplot,
1385  dmin = dmin, dmax = dmax,
1386  interiorLabels = interiorLabels)
1387 
1388  iplot = iplot + 1
1389 
1390  # save each figure
1391  filename = myPath/('%s%s_BinValAxisTSeries_%s-%smin_%s_%s_%s'%(
1392  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']),
1393  self.fcTDeltas_totminfcTDeltas_totmin[0], self.fcTDeltas_totminfcTDeltas_totmin[-1],
1394  self.DiagSpaceNameDiagSpaceName, fcDiagName, statName))
1395 
1396  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels)
1397 
1398 
1400  '''
1401  Similar to FCandBinValAxes2D, except
1402  - each vertical column of raster points is plotted as a profile on
1403  a separate set of axes instead of in 2-D color
1404  - therefore this is a valid plot even for a single forecast length (omb)
1405  - line: per experiment
1406  - subplot: column by lead time, row by DiagSpace variable
1407  - file: combination of binVar, binMethod, and statistic
1408  - self.MAX_FC_SUBFIGS determines number of FC lead times to include
1409  '''
1410  def __init__(self, db, analysisType, diagnosticGroupings):
1411  super().__init__(db, analysisType, diagnosticGroupings)
1412 
1413  self.requestAggDFWrequestAggDFWrequestAggDFW = True
1414 
1415  self.subWidthsubWidthsubWidth = 1.2
1416  self.subAspectsubAspectsubAspect = 1.3
1417 
1418  def innerloops(self,
1419  dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options):
1420 
1421  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, scilogScale, signDefinite = \
1422  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName, myLoc['diagName'])
1423 
1424  fcDiagName = self.fcNamefcNamefcName(diagnosticGroup)
1425  myPath = self.myFigPathmyFigPath/fcDiagName
1426  myPath.mkdir(parents=True, exist_ok=True)
1427 
1428  if self.nFCnFC > 1:
1429  nxplots = min([self.nFCnFC, self.MAX_FC_SUBFIGSMAX_FC_SUBFIGS])
1430  nyplots = nVarsLoc
1431  nsubplots = nxplots * nyplots
1432  else:
1433  nsubplots = nVarsLoc
1434  nxplots = np.int(np.ceil(np.sqrt(nsubplots)))
1435  nyplots = np.int(np.ceil(np.true_divide(nsubplots, nxplots)))
1436 
1437  ptLoc = {}
1438  axisLimitsLoc = {}
1439 
1440  # establish a new figure
1441  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
1442  iplot = 0
1443 
1444  #subplot loop 1
1445  for (varName, varLabel) in varMapLoc:
1446  ptLoc['varName'] = varName
1447  axisLimitsLoc['varName'] = varName
1448 
1449  #subplot loop 2
1450  for fcTDelta in self.fcTDeltasfcTDeltas:
1451  ptLoc['fcTDelta'] = fcTDelta
1452  axisLimitsLoc['fcTDelta'] = fcTDelta
1453 
1454 # if len(dfwDict['agg'].loc(axisLimitsLoc, statName)) == 0:
1455 # iplot += 1
1456 # continue
1457 
1458  # use common x-axis limits across axisLimitsLoc database locations
1459  if statName == 'Count':
1460  dmin = 0.
1461  else:
1462  dmin = dfwDict['agg'].min(axisLimitsLoc, statName)
1463  dmax = dfwDict['agg'].max(axisLimitsLoc, statName)
1464 
1465  #Setting to avoid over-crowding
1466  if self.fcTDeltasfcTDeltas.index(fcTDelta) > (self.MAX_FC_SUBFIGSMAX_FC_SUBFIGS-1): continue
1467 
1468  #collect aggregated statNames, varying across fcTDelta
1469  linesVals = []
1470  linesLabel = []
1471  linesGroup = []
1472  for expName in self.expNamesexpNames:
1473  ptLoc['expName'] = expName
1474  for diagnosticName in myLoc['diagName']:
1475  linesGroup.append(expName)
1476  linesLabel.append(expDiagnosticLabel(
1477  expName, diagnosticName, myLoc['diagName']))
1478 
1479  ptLoc['diagName'] = diagnosticName
1480 
1481  lineVals = []
1482  for binVal in myBinConfigs['str']:
1483  ptLoc['binVal'] = binVal
1484  pt = dfwDict['agg'].loc(ptLoc, statName).to_numpy()
1485  if len(pt) == 1:
1486  lineVals.append(pt[0])
1487  else:
1488  lineVals.append(np.NaN)
1489 
1490  linesVals.append(lineVals)
1491 
1492  # define subplot title
1493  title = varLabel+' @ '+str(float(fcTDelta.total_seconds()) / 3600.0 / 24.0)+'days'
1494 
1495  # perform subplot agnostic plotting (all expNames)
1496  options['profilefunc'](
1497  fig,
1498  linesVals, myBinConfigs['values'],
1499  linesLabel,
1500  title, fcstatDiagLabel,
1501  scilogScale, scilogScale, signDefinite,
1502  myBinConfigs['indepLabel'], myBinConfigs['invert_ind_axis'],
1503  nyplots, nxplots, nsubplots, iplot,
1504  dmin = dmin, dmax = dmax,
1505  interiorLabels = interiorLabels)
1506 
1507 
1508  iplot = iplot + 1
1509 
1510  # save each figure
1511  filename = myPath/('%s%s_BinValAxis_%s-%smin_%s_%s_%s'%(
1512  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']),
1513  self.fcTDeltas_totminfcTDeltas_totmin[0], self.fcTDeltas_totminfcTDeltas_totmin[-1],
1514  self.DiagSpaceNameDiagSpaceName, fcDiagName, statName))
1515 
1516  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels, True)
1517 
1518 
1520  '''
1521  Similar to BinValAxisProfile, except
1522  shows difference between experiment(s) and control
1523  - control is selected using cntrlExpIndex
1524  - statistics are narrowed down by bootStrapStats
1525  - confidence intervals (CI) are shown at each lead time and binVal
1526  - line+shaded region: per experiment
1527  - subplot: column by lead time, row by DiagSpace variable
1528  - file: combination of binVar, binMethod, and statistic
1529  - self.MAX_FC_SUBFIGS determines number of FC lead times to include
1530  '''
1531  def __init__(self, db, analysisType, diagnosticGroupings):
1532  super().__init__(db, analysisType, diagnosticGroupings)
1533 
1534  # OPTIONAL: implement fine-grained parallelism for bootStrapping
1535  #self.blocking = True
1536 
1537  for key in self.binVarDictbinVarDict:
1538  if 'onlyStatNames' in self.binVarDictbinVarDict[key]:
1539  self.binVarDictbinVarDict[key]['onlyStatNames'] += bootStrapStats
1540  else:
1541  self.binVarDictbinVarDict[key]['onlyStatNames'] = bootStrapStats
1542 
1543  self.subWidthsubWidthsubWidth = 1.2
1544  self.subAspectsubAspectsubAspect = 1.3
1545 
1546  def innerloops(self,
1547  dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options):
1548 
1549  if self.nExpnExp * len(myLoc['diagName']) < 2: return
1550  if self.cntrlExpNamecntrlExpName not in dfwDict['dfw'].levels('expName'): return
1551 
1552  bgstatDiagLabel, fcstatDiagLabel, fcstatDiagDiffLabel, scilogScale, signDefinite = \
1553  self.statPlotAttributesstatPlotAttributesstatPlotAttributes(diagnosticGroup, statName, myLoc['diagName'])
1554 
1555  fcDiagName = self.fcNamefcNamefcName(diagnosticGroup)
1556  myPath = self.myFigPathmyFigPath/fcDiagName
1557  myPath.mkdir(parents=True, exist_ok=True)
1558 
1559  if self.nFCnFC > 1:
1560  nxplots = min([self.nFCnFC, self.MAX_FC_SUBFIGSMAX_FC_SUBFIGS])
1561  nyplots = nVarsLoc
1562  nsubplots = nxplots * nyplots
1563  else:
1564  nsubplots = nVarsLoc
1565  nxplots = np.int(np.ceil(np.sqrt(nsubplots)))
1566  nyplots = np.int(np.ceil(np.true_divide(nsubplots, nxplots)))
1567 
1568  # Only bootstrap over the union of cyDTimes available
1569  # from both experiments at each fcTDelta
1570  myExpsCYDTimes = self.UNIONcntrlANDexpCYDTimesUNIONcntrlANDexpCYDTimesUNIONcntrlANDexpCYDTimes(dfwDict['dfw'])
1571 
1572  # establish a new figure
1573  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
1574  iplot = 0
1575 
1576  fcLoc = {}
1577  #subplot loop 1
1578  for (varName, varLabel) in varMapLoc:
1579  fcLoc['varName'] = varName
1580 
1581  #subplot loop 2
1582  for fcTDelta in self.fcTDeltasfcTDeltas:
1583  fcLoc['fcTDelta'] = fcTDelta
1584 
1585  # intermediate tempdfw reduces extraction time in inner loops
1586  tempdfw = sdb.DFWrapper.fromLoc(dfwDict['dfw'], fcLoc)
1587 
1588  cntrlLoc = deepcopy(fcLoc)
1589  cntrlLoc['expName'] = self.cntrlExpNamecntrlExpName
1590 
1591  #Setting to avoid over-crowding
1592  if self.fcTDeltasfcTDeltas.index(fcTDelta) > (self.MAX_FC_SUBFIGSMAX_FC_SUBFIGS-1): continue
1593 
1594  linesVals = defaultdict(list)
1595  linesLabel = []
1596  linesGroup = []
1597  cntrlLoc['diagName'] = myLoc['diagName'][0]
1598  for expName in self.expNamesexpNames:
1599  for diagnosticName in myLoc['diagName']:
1600  if (expName == cntrlLoc['expName'] and
1601  diagnosticName == cntrlLoc['diagName']): continue
1602  cntrlLoc['cyDTime'] = myExpsCYDTimes[(expName, fcTDelta)]
1603  linesGroup.append(expName)
1604  linesLabel.append(expDiagnosticLabel(
1605  expName, diagnosticName, myLoc['diagName']))
1606 
1607  lineVals = defaultdict(list)
1608 
1609  for binVal in myBinConfigs['str']:
1610  cntrlLoc['binVal'] = binVal
1611  expLoc = deepcopy(cntrlLoc)
1612  expLoc['diagName'] = diagnosticName
1613  expLoc['expName'] = expName
1614 
1615  X = tempdfw.loc(expLoc)
1616  Y = tempdfw.loc(cntrlLoc)
1617 
1618  ciVals = su.bootStrapClusterFunc(
1619  X, Y,
1620  n_samples = 10000,
1621  statNames = [statName])
1622 
1623  for trait in su.ciTraits:
1624  lineVals[trait] += [ciVals[statName][trait][0]]
1625 
1626  for trait in su.ciTraits:
1627  linesVals[trait].append(lineVals[trait])
1628 
1629  # define subplot title
1630  title = varLabel+' @ '+str(float(fcTDelta.total_seconds()) / 3600.0 / 24.0)+'days'
1631 
1632  # use specific y-axis limits for each varName
1633  dmin = np.nanmin(linesVals[su.cimin])
1634  dmax = np.nanmax(linesVals[su.cimax])
1635 
1636  # perform subplot agnostic plotting (all expNames)
1637  options['profilefunc'](
1638  fig,
1639  linesVals[su.cimean], myBinConfigs['values'],
1640  linesLabel,
1641  title,
1642  fcstatDiagDiffLabel,
1643  scilogScale, scilogScale, False,
1644  myBinConfigs['indepLabel'], myBinConfigs['invert_ind_axis'],
1645  nyplots, nxplots, nsubplots, iplot,
1646  linesValsMinCI = linesVals[su.cimin],
1647  linesValsMaxCI = linesVals[su.cimax],
1648  dmin = dmin, dmax = dmax,
1649  lineAttribOffset = 1,
1650  interiorLabels = interiorLabels)
1651 
1652  iplot = iplot + 1
1653 
1654  # save each figure
1655  filename = myPath/('%s%s_BinValAxis_%s-%smin_%s_%s_%s'%(
1656  myLoc['binVar'], self.binMethodFilebinMethodFilebinMethodFile(myLoc['binMethod']),
1657  self.fcTDeltas_totminfcTDeltas_totmin[0], self.fcTDeltas_totminfcTDeltas_totmin[-1],
1658  self.DiagSpaceNameDiagSpaceName, fcDiagName, statName))
1659 
1660  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels, True)
1661 
1662 
1664  '''
1665  Similar to BinValAxisProfile, except
1666  uses Count statistic to analyze a PDF across binVals
1667  - x-axis: binVal
1668  - line: per binMethod
1669  - subplot: combination of FC lead time and DiagSpace variable
1670  - file: per experiment (if applicable)
1671  '''
1672  def __init__(self, db, analysisType, diagnosticGroupings):
1673  super().__init__(db, analysisType, diagnosticGroupings)
1674  # TODO(JJG): Make a generic version of bpf.plotPDF, which
1675  # currently overlays a standard Gaussian model. That should
1676  # be a special case only for vu.obsVarNormErr.
1677  self.binVarDictbinVarDict = {
1678  vu.obsVarNormErr: {'pdffunc': bpf.plotPDF},
1679  }
1680 
1681  self.requestAggDFWrequestAggDFWrequestAggDFW = True
1682 
1683  self.subWidthsubWidthsubWidth = 1.2
1684  self.subAspectsubAspectsubAspect = 1.3
1685 
1686  self.requiredStatisticsrequiredStatisticsrequiredStatistics = ['Count']
1687 
1688  def analyze_(self, workers = None):
1689  for diagnosticName, diagnosticConfig in self.diagnosticConfigsdiagnosticConfigs.items():
1690  if diagnosticName not in self.dbdb.dfw.levels('diagName'): continue
1691  analysisStatistics = diagnosticConfig['analysisStatistics']
1692  if not set(self.requiredStatisticsrequiredStatisticsrequiredStatistics).issubset(analysisStatistics): continue
1693 
1694  diagBinVars = self.dbdb.dfw.levels('binVar', {'diagName': diagnosticName})
1695 
1696  for fullBinVar, options in self.binVarDictbinVarDict:
1697  binVar = vu.varDictAll[fullBinVar][1]
1698  if binVar not in diagBinVars: continue
1699 
1700  myLoc = {}
1701  myLoc['diagName'] = diagnosticName
1702  myLoc['binVar'] = binVar
1703  myLoc['binVal'] = self.binNumVals2DasStrbinNumVals2DasStr
1704 
1705  # reducing to mydfwDict speeds extractions in innerloops
1706  mydfwDict = {'dfw': self.dbdb.loc(myLoc)}
1707 
1708  # include aggregated statistics when requested
1709  if self.requestAggDFWrequestAggDFWrequestAggDFW:
1710  mydfwDict['agg'] = sdb.DFWrapper.fromAggStats(mydfwDict['dfw'], ['cyDTime'])
1711 
1712  ## Get all float/int binVals associated with binVar
1713  binMethods = mydfwDict['dfw'].levels('binMethod')
1714  binVals = mydfwDict['dfw'].levels('binVal')
1715  binUnits = mydfwDict['dfw'].uniquevals('binUnits')[0]
1716 
1717  # assume all bins represent same variable/units
1718  indepLabel = binVar
1719  if binUnits != vu.miss_s:
1720  indepLabel = indepLabel+' ('+binUnits+')'
1721 
1722  # bin info
1723  binNumVals = []
1724  for binVal in binVals:
1725  ibin = self.allBinValsallBinVals.index(binVal)
1726  binNumVals.append(self.binNumValsbinNumVals[ibin])
1727 
1728  # sort bins by numeric value
1729  indices = list(range(len(binNumVals)))
1730  indices.sort(key=binNumVals.__getitem__)
1731  binNumVals = list(map(binNumVals.__getitem__, indices))
1732  binVals = list(map(binVals.__getitem__, indices))
1733 
1734  if len(binVals) < 2: continue
1735 
1736  self.loggerlogger.info('binVar=>'+binVar)
1737 
1738  fcDiagName = self.fcNamefcNamefcName(diagnosticName)
1739  myPath = self.myFigPathmyFigPath/fcDiagName
1740  myPath.mkdir(parents=True, exist_ok=True)
1741 
1742  if self.nFCnFC > 1:
1743  nxplots = min([self.nFCnFC, self.MAX_FC_SUBFIGSMAX_FC_SUBFIGS])
1744  nyplots = self.nVarsnVars
1745  nsubplots = nxplots * nyplots
1746  else:
1747  nsubplots = self.nVarsnVars
1748  nxplots = np.int(np.ceil(np.sqrt(nsubplots)))
1749  nyplots = np.int(np.ceil(np.true_divide(nsubplots, nxplots)))
1750 
1751  ptLoc = deepcopy(myLoc)
1752 
1753  #file loop 1
1754  for expName in self.expNamesexpNames:
1755  ptLoc['expName'] = expName
1756 
1757  # establish a new figure
1758  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
1759 
1760  iplot = 0
1761 
1762  #subplot loop 1
1763  for (varName, varLabel) in self.varMapvarMap:
1764  ptLoc['varName'] = varName
1765 
1766  #subplot loop 2
1767  for fcTDelta in self.fcTDeltasfcTDeltas:
1768  ptLoc['fcTDelta'] = fcTDelta
1769 
1770  #Setting to avoid over-crowding
1771  if self.fcTDeltasfcTDeltas.index(fcTDelta) > (self.MAX_FC_SUBFIGSMAX_FC_SUBFIGS-1): continue
1772 
1773  #collect aggregated statNames, varying across fcTDelta
1774  linesVals = []
1775  binMethodLabels = []
1776  for binMethod in binMethods:
1777  ptLoc['binMethod'] = binMethod
1778 
1779  # if binMethod != bu.identityBinMethod: do something with bu.identityBinMethod
1780  if binMethod == bu.identityBinMethod:
1781  binMethodLabels.append('ObsSpace')
1782  else:
1783  binMethodLabels.append(binMethod)
1784 
1785  lineVals = []
1786  for binVal in binVals:
1787  ptLoc['binVal'] = binVal
1788  lineVals.append(dfwDict['agg'].loc(ptLoc,'Count'))
1789 
1790  linesVals.append(lineVals)
1791 
1792  # define subplot title
1793  title = varLabel+' @ '+str(float(fcTDelta.total_seconds()) / 3600.0 / 24.0)+'days'
1794 
1795  # perform subplot agnostic plotting (all expNames)
1796  options['pdffunc'](
1797  fig,
1798  linesVals, binNumVals,
1799  binMethodLabels,
1800  title,
1801  indepLabel,
1802  nyplots, nxplots, nsubplots, iplot,
1803  interiorLabels = interiorLabels)
1804 
1805  iplot = iplot + 1
1806 
1807  # end fcTDelta loop
1808 
1809  # end varMap loop
1810 
1811  # save each figure
1812  filename = myPath/('%s_BinValAxis_%s-%smin_%s_%s_%s'%(
1813  binVar, self.fcTDeltas_totminfcTDeltas_totmin[0], self.fcTDeltas_totminfcTDeltas_totmin[-1],
1814  self.DiagSpaceNameDiagSpaceName, fcDiagName, expName))
1815 
1816  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels, True)
1817 
1818  # end expName loop
1819 
1820 
1821 # TODO: generalize as a sub-class of OneDimBinMethodBase
1823  '''
1824  Similar to BinValAxisProfile, except
1825  all statistics (Count, Mean, RMS, STD) are placed on the same axis
1826  - x-axis: binVal
1827  - line: per statistic
1828  - subplot: per DiagSpace variable
1829  - file: combination of FC lead time, experiment, and binMethod (if applicable)
1830  '''
1831  def __init__(self, db, analysisType, diagnosticGroupings):
1832  super().__init__(db, analysisType, diagnosticGroupings)
1833  self.binVarDictbinVarDict = {
1834  # TODO(JJG): Make a generic version of bpf.plotComposite, because
1835  # bpf.plotfitRampComposite also provides parameters for a ramp fitting
1836  # function that may not be useful for binVars besides vu.obsVarSCI.
1837  vu.obsVarSCI: {'statsfunc': bpf.plotfitRampComposite},
1838  }
1839 
1840  self.requestAggDFWrequestAggDFWrequestAggDFW = True
1841 
1842  # Force serial processing so that console output is contiguous
1843  # TODO(JJG): output to an ascii file and remove this line
1844  self.blockingblockingblocking = True
1845 
1846  self.subWidthsubWidthsubWidth = 1.9
1847  self.subAspectsubAspectsubAspect = 0.9
1848 
1849  self.requiredStatisticsrequiredStatisticsrequiredStatistics = ['Count', 'Mean', 'RMS', 'STD']
1850 
1851  def analyze_(self, workers = None):
1852  for diagnosticName, diagnosticConfig in self.diagnosticConfigsdiagnosticConfigs.items():
1853  if diagnosticName not in self.dbdb.dfw.levels('diagName'): continue
1854  analysisStatistics = diagnosticConfig['analysisStatistics']
1855  if not set(self.requiredStatisticsrequiredStatisticsrequiredStatistics).issubset(set(analysisStatistics)): continue
1856 
1857  diagBinVars = self.dbdb.dfw.levels('binVar', {'diagName': diagnosticName})
1858 
1859  for fullBinVar, options in self.binVarDictbinVarDict.items():
1860  binVar = vu.varDictAll[fullBinVar][1]
1861  if (binVar not in diagBinVars): continue
1862 
1863  myLoc = {}
1864  myLoc['diagName'] = diagnosticName
1865  myLoc['binVar'] = binVar
1866  myLoc['binVal'] = self.binNumVals2DasStrbinNumVals2DasStr
1867 
1868  # reducing to mydfwDict speeds extractions in innerloops
1869  mydfwDict = {'dfw': self.dbdb.loc(myLoc)}
1870 
1871  # include aggregated statistics when requested
1872  if self.requestAggDFWrequestAggDFWrequestAggDFW:
1873  mydfwDict['agg'] = sdb.DFWrapper.fromAggStats(mydfwDict['dfw'], ['cyDTime'])
1874 
1875  ## Get all float/int binVals associated with binVar
1876  binMethods = mydfwDict['dfw'].levels('binMethod')
1877  binVals = mydfwDict['dfw'].levels('binVal')
1878  binUnits = mydfwDict['dfw'].uniquevals('binUnits')[0]
1879 
1880  # assume all bins represent same variable/units
1881  indepLabel = binVar
1882  if binUnits != vu.miss_s:
1883  indepLabel = indepLabel+' ('+binUnits+')'
1884 
1885  # bin info
1886  binNumVals = []
1887  for binVal in binVals:
1888  ibin = self.allBinValsallBinVals.index(binVal)
1889  binNumVals.append(self.binNumValsbinNumVals[ibin])
1890 
1891  # sort bins by numeric value
1892  indices = list(range(len(binNumVals)))
1893  indices.sort(key=binNumVals.__getitem__)
1894  binNumVals = list(map(binNumVals.__getitem__, indices))
1895  binVals = list(map(binVals.__getitem__, indices))
1896 
1897  nBins = len(binVals)
1898  if nBins < 2: continue
1899 
1900  fcDiagName = self.fcNamefcNamefcName(diagnosticName)
1901  myPath = self.myFigPathmyFigPath/fcDiagName
1902  myPath.mkdir(parents=True, exist_ok=True)
1903 
1904  nsubplots = self.nVarsnVars
1905  nxplots = np.int(np.ceil(np.sqrt(nsubplots)))
1906  nyplots = np.int(np.ceil(np.true_divide(nsubplots, nxplots)))
1907 
1908  ptLoc = {}
1909 
1910  #file loop 1
1911  for binMethod in binMethods:
1912  ptLoc['binMethod'] = binMethod
1913 
1914  self.loggerlogger.info('binVar=>'+binVar+', binMethod=>'+binMethod)
1915 
1916  #file loop 2
1917  for expName in self.expNamesexpNames:
1918  ptLoc['expName'] = expName
1919 
1920  #file loop 3
1921  for (fcTDelta, fcTDelta_totmin) in self.fcMapfcMap:
1922  ptLoc['fcTDelta'] = fcTDelta
1923 
1924  # establish a new figure
1925  fig = pu.setup_fig(nxplots, nyplots, self.subWidthsubWidthsubWidth, self.subAspectsubAspectsubAspect, interiorLabels)
1926  iplot = 0
1927 
1928  ERRParams = {}
1929  ERRParams[self.DiagSpaceNameDiagSpaceName] = {}
1930 
1931  #subplot loop 1
1932  for (varName, varLabel) in self.varMapvarMap:
1933  ptLoc['varName'] = varName
1934 
1935  #collect aggregated statNames, varying across fcTDelta
1936  countsVals = np.full(nBins,0)
1937  meansVals = np.full(nBins, np.NaN)
1938  rmssVals = np.full(nBins, np.NaN)
1939  stdsVals = np.full(nBins, np.NaN)
1940 
1941  for ibin, binVal in enumerate(binVals):
1942  ptLoc['binVal'] = binVal
1943  countsVals[ibin] = mydfwDict['agg'].loc(ptLoc,'Count').to_numpy()
1944  meansVals[ibin] = mydfwDict['agg'].loc(ptLoc,'Mean').to_numpy()
1945  rmssVals[ibin] = mydfwDict['agg'].loc(ptLoc,'RMS').to_numpy()
1946  stdsVals[ibin] = mydfwDict['agg'].loc(ptLoc,'STD').to_numpy()
1947 
1948  # define subplot title
1949  title = varLabel
1950 
1951  # perform subplot agnostic plotting (all expNames)
1952  FitParams = options['statsfunc'](
1953  fig,
1954  binNumVals,
1955  countsVals,
1956  meansVals,
1957  rmssVals,
1958  stdsVals,
1959  title,
1960  'STATS('+fcDiagName+')',
1961  indepLabel,
1962  nyplots, nxplots, nsubplots, iplot,
1963  interiorLabels = interiorLabels)
1964 
1965  paramKey = self.chlistchlist[iplot]
1966  if paramKey == '': paramKey = varName
1967  ERRParams[self.DiagSpaceNameDiagSpaceName][(paramKey, binMethod)] = FitParams
1968 
1969  iplot = iplot + 1
1970 
1971  YAMLParams = {}
1972  print('\n#For binning_params:')
1973  for key in sorted(ERRParams[self.DiagSpaceNameDiagSpaceName]):
1974  print(binVar+"ErrParams['"+self.DiagSpaceNameDiagSpaceName+"'][", key, "] = ",
1975  ERRParams[self.DiagSpaceNameDiagSpaceName][key]['bu'])
1976  for param, val in ERRParams[self.DiagSpaceNameDiagSpaceName][key]['YAML'].items():
1977  if param not in YAMLParams: YAMLParams[param] = []
1978  YAMLParams[param] += val
1979  print('\n#For UFO YAML config:')
1980  for param, val in YAMLParams.items():
1981  print('# '+param+':', val)
1982 
1983  # save each figure
1984  filename = myPath/('%s%s_BinValAxis_%smin_%s_%s_%s'%(
1985  binVar, self.binMethodFilebinMethodFilebinMethodFile(binMethod), fcTDelta_totmin,
1986  self.DiagSpaceNameDiagSpaceName, fcDiagName, expName))
1987 
1988  pu.finalize_fig(fig, str(filename), figureFileType, interiorLabels, True)
1989 
1990  # end expName loop
1991 
1992  # end binMethod loop
1993 
1994  # end fullBinVar loop
1995 
1996 
1997 #===========================
1998 # Calculate gross statistics
1999 #===========================
2001  '''
2002  Calculate gross statistics for specified category binMethods at first forecast length
2003  NOTE: currently only calculates statistics at self.fcTDeltas[0]
2004  adjust minimum forecast length in order to calculate
2005  for non-zero forecast lengths, assuming those lengths
2006  are present in db
2007  '''
2008  def __init__(self, db, analysisType, diagnosticGroupings):
2009  super().__init__(db, analysisType, diagnosticGroupings)
2010 
2011  self.requestAggDFWrequestAggDFWrequestAggDFW = True
2012 
2013  # Force serial processing so that console output is contiguous
2014  # TODO(JJG): output to an ascii file and remove this line
2015  self.blockingblockingblocking = True
2016 
2017  self.binVarDictbinVarDict = {
2018  (vu.obsVarQC, bu.goodQCMethod): {},
2019  (vu.obsVarCldFrac, bu.cloudbandsMethod): {},
2020  }
2021 
2022  def analyze_(self, workers = None):
2023  for diagnosticName, diagnosticConfig in self.diagnosticConfigsdiagnosticConfigs.items():
2024  if diagnosticName not in self.dbdb.dfw.levels('diagName'): continue
2025  analysisStatistics = diagnosticConfig['analysisStatistics']
2026  if not set(self.requiredStatisticsrequiredStatistics).issubset(set(analysisStatistics)): continue
2027 
2028  diagLoc = {'diagName': diagnosticName}
2029  diagBinVars = self.dbdb.dfw.levels('binVar', diagLoc)
2030  diagBinMethods = self.dbdb.dfw.levels('binMethod', diagLoc)
2031 
2032  for (fullBinVar, binMethod), options in self.binVarDictbinVarDict.items():
2033  binVar = vu.varDictAll[fullBinVar][1]
2034  if (binVar not in diagBinVars or
2035  binMethod not in diagBinMethods): continue
2036 
2037  # narrow mydfwDict by binVar and binMethod to reduce run-time and memory
2038  myLoc = {}
2039  myLoc['binVar'] = binVar
2040  myLoc['binMethod'] = binMethod
2041 
2042  # reducing to mydfwDict speeds extractions in innerloops
2043  mydfwDict = {'dfw': self.dbdb.loc(myLoc)}
2044 
2045  if self.requestAggDFWrequestAggDFWrequestAggDFW:
2046  mydfwDict['agg'] = sdb.DFWrapper.fromAggStats(mydfwDict['dfw'], ['cyDTime'])
2047  sdb.createORreplaceDerivedDiagnostics(mydfwDict['agg'], {diagnosticName: diagnosticConfig})
2048 
2049  # further narrow mydfwDict by diagName
2050  # NOTE: derived diagnostics may require multiple diagName values;
2051  # can only narrow by diagName after aggregation
2052  myLoc['diagName'] = diagnosticName
2053  for key in mydfwDict.keys():
2054  mydfwDict[key] = sdb.DFWrapper.fromLoc(mydfwDict[key], myLoc)
2055 
2056  print(' Calculate gross statistics: binVar=>'+binVar+', binMethod=>'+binMethod)
2057 
2058  binValsMap = categoryBinValsAttributes(
2059  mydfwDict['dfw'], fullBinVar, binMethod, options)
2060 
2061  print(' at FC length ', self.fcTDeltasfcTDeltas[0])
2062  # Calculate gross statistics for this binVal
2063  statsLoc = {}
2064  statsLoc['fcTDelta'] = self.fcTDeltasfcTDeltas[0]
2065  for binVal, binTitle in binValsMap:
2066  statsLoc['binVal'] = binVal
2067  GrossValues = {}
2068  for varName in self.varNamesvarNames:
2069  statsLoc['varName'] = varName
2070  for expName in self.expNamesexpNames:
2071  statsLoc['expName'] = expName
2072  statsDFW = sdb.DFWrapper.fromLoc(mydfwDict['agg'], statsLoc)
2073  for statName in analysisStatistics:
2074  GrossValues[(statName, expName, varName)] = statsDFW.var(statName).to_numpy()
2075  for expName in self.expNamesexpNames:
2076  print('Gross statistics for')
2077  print('experiment=>'+expName)
2078  if len(binValsMap) > 1:
2079  print('binVal=>'+binVal)
2080  print(' variables: ', self.varNamesvarNames)
2081 
2082  for statName in analysisStatistics:
2083  print(statName)
2084  tmp = np.asarray([])
2085  for varName in self.varNamesvarNames:
2086  tmp = np.append(tmp, GrossValues[(statName, expName, varName)])
2087  print(tmp)
2088 
2089 AnalysisTypeDict = {
2090  #Derived from CategoryBinMethodBase(AnalysisBase)
2091  'CYAxisExpLines': CYAxisExpLines,
2092  'FCAxisExpLines': FCAxisExpLines,
2093  'FCAxisExpLinesDiffCI': FCAxisExpLinesDiffCI,
2094  'CYAxisFCLines': CYAxisFCLines,
2095  'CYAxisBinValLines': CYAxisBinValLines,
2096  #Derived from OneDimBinMethodBase(AnalysisBase)
2097  'CYandBinValAxes2D': CYandBinValAxes2D,
2098  'FCandBinValAxes2D': FCandBinValAxes2D,
2099  'BinValAxisProfile': BinValAxisProfile,
2100  'BinValAxisProfileDiffCI': BinValAxisProfileDiffCI,
2101  # TODO(JJG): TwoDimBinMethodBase(AnalysisBase)
2102  #'BinValAxes2D': BinValAxes2D,
2103  #Derived from AnalysisBase
2104  'BinValAxisPDF': BinValAxisPDF,
2105  'BinValAxisStatsComposite': BinValAxisStatsComposite,
2106  'GrossValues': GrossValues,
2107 }
2108 
2109 # NOTES:
2110 # (1) FCAxis* types require non-zero forecast length
2111 # (2) CYAxis* types require > 1 analysis cycle
2112 # (3) CYAxisFCLines requires (1) and (2)
2113 # (4) *DiffCI types require more than one experiment
2114 
2115 def AnalysisFactory(db, analysisType, diagnosticGroupings):
2116  myClass = AnalysisTypeDict.get(analysisType, None)
2117  assert (myClass is not None and inspect.isclass(myClass)), \
2118  ('\n\nERROR: AnalysisFactory cannot construct ', analysisType, ' without instructions in AnalysisTypeDict')
2119  return myClass(db, analysisType, diagnosticGroupings)
2120 
2121 
2122 class Analyses():
2123  def __init__(self, db, analysisTypes, diagnosticGroupings = {}, nproc = 1):
2124  self.nprocnproc = nproc
2125  self.analysesanalyses = []
2126  for anType in analysisTypes:
2127  self.analysesanalyses.append(AnalysisFactory(db, anType, diagnosticGroupings))
2128  self.loggerlogger = logging.getLogger(__name__+'.'+db.DiagSpaceName)
2129  self.loggerlogger.info('Analyses Constructed')
2130 
2131  def analyze(self):
2132  self.loggerlogger.info("Entering Analyses.analyze()")
2133 
2134  if self.nprocnproc > 1:
2135  workers = mp.Pool(self.nprocnproc)
2136  else:
2137  workers = None
2138 
2139  for an in self.analysesanalyses:
2140  an.analyze(workers)
2141 
2142  if workers is not None:
2143  workers.close()
2144  workers.join()
2145 
2146  self.loggerlogger.info("Exiting Analyses.analyze()")
def analyze(self)
Definition: Analyses.py:2131
def __init__(self, db, analysisTypes, diagnosticGroupings={}, nproc=1)
Definition: Analyses.py:2123
Base class for all analysisTypes.
Definition: Analyses.py:40
blocking
Establish default configuration.
Definition: Analyses.py:83
DiagSpacePath
Setup paths.
Definition: Analyses.py:108
def statPlotAttributes(self, diagnosticGroup, statName, allDiagnosticNames=None)
Definition: Analyses.py:142
def __init__(self, db, analysisType, diagnosticGroupings={})
Definition: Analyses.py:41
def binMethodFile(self, binMethod, before=True)
Definition: Analyses.py:114
def fcName(self, diagnosticGroup)
Definition: Analyses.py:127
def analyze_(self, workers=None)
Definition: Analyses.py:226
def UNIONcntrlANDexpCYDTimes(self, dfw, myLoc={})
Definition: Analyses.py:192
def analyze(self, workers=None)
Definition: Analyses.py:214
db
Extract useful variables from the database.
Definition: Analyses.py:49
def analyze_(self, workers=None)
Definition: Analyses.py:1688
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:1672
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:1531
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options)
Definition: Analyses.py:1547
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options)
Definition: Analyses.py:1419
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:1410
def analyze_(self, workers=None)
Definition: Analyses.py:1851
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:1831
Figures with individual lines per binVal.
Definition: Analyses.py:899
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:900
def subplotArrangement(self, dummy)
Definition: Analyses.py:926
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options, nsubplots, nxplots, nyplots)
Definition: Analyses.py:949
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:939
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:439
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options, nsubplots, nxplots, nyplots)
Definition: Analyses.py:447
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:788
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options, nsubplots, nxplots, nyplots)
Definition: Analyses.py:798
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:1216
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options)
Definition: Analyses.py:1225
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options, nsubplots, nxplots, nyplots)
Definition: Analyses.py:423
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:299
def analyze_(self, workers=None)
Definition: Analyses.py:332
def subplotArrangement(self, binValsMap)
Definition: Analyses.py:319
def innerloopsWrapper(self, diagnosticGroup, diagnosticConfigs, fullBinVar, binMethod, analysisStatistics, options)
Definition: Analyses.py:386
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options, nsubplots, nxplots, nyplots)
Definition: Analyses.py:670
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:653
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:547
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, binValsMap, options, nsubplots, nxplots, nyplots)
Definition: Analyses.py:557
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:1313
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options)
Definition: Analyses.py:1324
def analyze_(self, workers=None)
Definition: Analyses.py:2022
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:2008
Figures with binVal on one axis, i.e., 2D and profiles.
Definition: Analyses.py:1046
def analyze_(self, workers=None)
Definition: Analyses.py:1073
def __init__(self, db, analysisType, diagnosticGroupings)
Definition: Analyses.py:1051
def innerloops(self, dfwDict, diagnosticGroup, myLoc, statName, nVarsLoc, varMapLoc, myBinConfigs, options)
Definition: Analyses.py:1202
def innerloopsWrapper(self, diagnosticGroup, diagnosticConfigs, binVar, binMethod, analysisStatistics, options)
Definition: Analyses.py:1129
def AnalysisFactory(db, analysisType, diagnosticGroupings)
Definition: Analyses.py:2115
def anWorkingDir(DiagSpace)
Definition: Analyses.py:34
def categoryBinValsAttributes(dfw, fullBinVar, binMethod, options)
Definition: Analyses.py:240
def expDiagnosticLabel(expName, diagnosticName, allDiagnosticNames)
Definition: Analyses.py:233