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Overall Goals:
• Improve ocean analyses for initialization of coupled forecasts.
• Ocean climate variability
• Ocean color Climate Data Records (CDRs)

Methods:
• Optimal Interpolation (univariate)
• Ensemble Kalman Filter (multi-variate, state-dependent; satellite altimetry)
• Bred-vectors to capture dominant growing modes of error
• SEIK filter (Ocean Color)

Model:
• Poseidon V4 and V5 - quasi-isopycnal model (Paul Schopf)
• MOM4 (GFDL)
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Ocean in situ observations 
TAO/TRITON/PIRATA moorings
+ XBTs
+ ARGO 
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Salinity Profiles per annum
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Topex/Poseidon SSH anomalies January 1998

Surface Height
TOPEX:  August 1992-2005
JASON: December 2001---
JASON-2: June 2008

Surface Winds
SSM/I:  July 1987 ---  
NSCAT: Aug 1996 -- June1997
QuikSCAT: June 1999 ---

Sea Surface Temperature
AVHRR:  1982 ---  
MODIS: 2000 ---
TMI: 1997 ---
Aqua/AMSR-E: 2002 ---

Surface Salinity
Aquarius: 2010

Ocean Color
CZCS: Oct 1978 -- June 1986  
SeaWiFS: August 1997 --
MODIS: 2000---



Optimal Interpolation (univariate)
• Fixed Gaussian covariances: xs=20º, ys=5º, zs=100m; more isotropic with
increasing latitude
•Temperature (T) and Salinity (S) assimilated separately

Ensemble Kalman Filter (multi-variate, state-dependent; satellite altimetry)
• Surface height is a diagnostic - calculate <δSSH, δT(z)> and <δSSH, δS(z)> to
“project” corrections to surface height anomalies through the water column
• Temperature data used to update salinity and currents
• Salinity data used to update temperature and currents

Observations
• Instrument error and Representation error
• Synthetic salinity used to constrain water masses

Surface Forcing
• One of the major source of errors!
• Heat, fresh water and momentum fluxes
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model climate

b) Assimilation with online bias estimation (OBE)

true climate
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We assimilate:
 In-situ temperature profiles
 In-situ salinity profiles from Argo floats
 Synthetic salinity profiles from observed T(z) and climatological T-S relations
 T/P and Jason-1 SSH anomalies ⇒ Bias must be accounted for when assimilating SSH

Side by side estimation of:
• Unbiased error
• Climatological error (bias)

true climate

model climate

a) Standard assimilation

bi
as
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yk

xk
i  state vector (T, S, u,v, SSH)

Pk    state error covariance

Rk    observation error covariance

Propagation tk-1 to tk:

xk
i- = f(xk-1

i+) + wk
i

w = model error

Update at tk:
xk

i+ = xk
i- + Kk(yk

i - xk
i- ) 

       for each ensemble member i=1…N
Kk = Pk (Pk + Rk)-1

       with Pk computed from ensemble spread
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Compactly supported EnKF (bias estimation omitted)

Compensating for the effects of small ensemble size:
Φ:  smoothing operator for small scales
C: Compact support operator (Schur product) from Gaspari and Cohn (1985)
Variance inflation to avoid filter collapse



EnKF-33: filter
Schur(C,P) @(0N,156E,150m)

H-section z=150m V-section x=156E

03/31/01

06/31/01

09/31/01

12/31/01

Corr(T,T)

Mar. 01

Jun. 01

Sep. 01

Dec. 01

Temporal evolution of Kalman gain for T obs.
Ocean state-dependent covariances with the Ocean state-dependent covariances with the EnKFEnKF

Christian Keppenne
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Ocean climate for June 2007 along the equatorial Pacific

OI - XBTT ENKF NCEP’s GODAS
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Ocean climate for June 2007 along 155°W

OI - XBTT ENKF NCEP’s GODAS
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Area 1
Area 3

Area 2
Area 4

Independent Validation
RMSD of analysis c.f.  
TAO servicing cruise CTDs
1994-1998
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Independent Validation
RMSD of analysis c.f.  
TAO ADCP zonal currents
1993-2006
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1-month lead

3-month lead

6-month lead

EnKF OI-TS 

Forecast skill (ACC) from CGCMv1
Heat content anomaly in upper 300m

1993-2006
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1-month lead

3-month lead

6-month lead

EnKF OI-TS 

Forecast skill (ACC) from CGCMv1
SST anomaly
1993-2006
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The impact of Argo - preparing for Aquarius
Christian Keppenne and Robin Kovach
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Augmenting covariance estimates with
information from bred vectors

Shu-Chih Yang
Christian Keppenne, Eugenia Kalnay
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 Coupled breeding technique is designed to capture the growing errors
related to slow-varying coupled instabilities, like ENSO-related
growing errors.

 Breeding is a nonlinear approach and tightly related to the Ensemble
Kalman Filter.

 Coupled breeding is implemented in the NASA/GMAO coupled
general circulation model (CGCM). The applications of bred vectors
(BVs) are explored for the purpose of improving couple forecasting:
• use BVs as the initial ensemble perturbations of the ensemble

forecast system for ENSO prediction
• Augment the background error covariances in ocean data

assimilation system with the structure of BVs.

Background
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• NASA/GMAO coupled GCM (Poseidon+ NSIPP-1 AGCM)
• Bred vectors : Differences between the control forecast and

perturbed run
• Coupled breeding cycle needs to choose physically meaningful

breeding parameters in order to choose the type of instability

Breeding in the GMAO coupled GCM

rescaling time
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• 4 different rescaling norms are chosen to measure the coupled
atmosphere-ocean instability (10% of Climate variability, rescale every
month)

1. |SSTBV|=0.1°C (in 150°W~90°W, 5°S~5°N)
2. |D20BV|=1.5 m (in 160°E~140°W, 2.5°S~2.5°N)
3. |[u’BV,h’BV]|=6.5×10-3 (in 130°E-80°W, 5°S~5°N)
      >> the first 4 long wave modes (Kelvin+3 Rossby waves)
4. |[uBVτxc+ucτxBV]|=0.1 (in 130°E-80°W, 5°S~5°N)
     >> work done on the ocean by the atmosphere (Goddard and

Philander, 1999)

•  Initial conditions for CGCM:
• Ocean analysis (T, S assimilated with optimal interpolation scheme)
+ AMIP restart
• 4 pairs of ± coupled BVs are centered at this initial condition

Coupled Bred vectors
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Dominant growing modes from BVs
in Pacific
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Dominant growing modes from EnKF
in Pacific
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Control

BVs ensemble mean

Ensemble forecasts initialized from 4 ±BVs
pattern correlation: SSTA vs. Reynolds SSTA at 9-month lead time (1993~2002)

4 BV ensemble mean has higher skill than control

Feb start May start Aug start Nov start

Feb start May start Aug start Nov start
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Ensemble-based covariance in hybrid-OI scheme

xa
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d : the difference between forecast and observations (innovation
vector)
α =0 : Fully Pcontrol, approximate to Univariate OI

Pf = (1- α) POI +α Pf
0

Pf : the background error covariance
Pf

0 : Ensemble-based background error covariance
Pcontrol: Gaussian covariance (xs=20º, ys=5º, zs=100m)
α : the hybrid coefficient

(analysis increment)
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Assimilation experiment setup

TAO, XBT, ARGO, PirataObservations

xf=4º, yf=2ºGaussian horizontal filter for Pf
0

σT=0.7°C, σS= 0.1psuBackground error

xs=8º, ys=4º, zs=100mCovariance localization for Pf
0

4-day (Jan2002 ~ Dec2002)Assimilation interval

Experiments:
(1) only the Gaussian function (control)

• used as the benchmark
(2) Pf is based on 4 EOF modes

• EOFs are constructed from long and large ensemble runs
(3) Pf is based on 4 BVs (updated every month)
(4) Pf is based on 4 BVs (updated every 4 days by

linear interpolation)



31

Normalized Error covariance structure

control
(UOI)

4EOF

4BVs 

Temperature correlation of the location at (156°E, EQ, 150m)

4BVs 

Warm event

Cold event

Fixed in time
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Annual Mean 2002 structure in the equatorial Pacific
Temperature                               Salinity                                  zonal current
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Comparisons with independent observations

[GTSPP T profiles − monthly analysis] in Niño3 region

Temp. observations from Global Temperature Salinity Profile Program

• Both the 4BV_4day and 4EOFs runs show improvement over the
Control.

• The 4BV_4day run has positive impact on (i) summer season and
(ii) the upper ocean of Nov&Dec.

control 4BVs_4day 4EOF
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RMS of Temp./Salin OMF in Pacific
E01: 4-day BVs
E03: monthly tendency BVs
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 Ensemble forecasts initialized from 4 coupled ±BVs have increased
skill when starting from cold phase of the annual cycle.

 Augmenting the Gaussian background error covariance by 4BVs (a
hybrid system) has positive impact when assimilating real T and S
observations.

 The optimal hybrid weighting is 30-40% of the total background error
covariance.

 Overall, between the two hybrid experiments, the one with the BVs
applicable at the analysis time (BVs_4day) generates the better T and
S analyses.
• For T, the improvement over the control is seen in the tropical Pacific.
• For S, the improvement is mainly located in the western Pacific during

late spring  to summer season.
• BVs_4day carries the error structures most dynamically relevant to the

slowly growing mode.

Summary
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Ocean Color Assimilation
Watson Gregg and Lars Nerger
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Ocean Color Data Assimilation complete, products available GES-DISC
Giovanni (http://reason.gsfc.nasa.gov)

Goal:  Consistent (climate) products from CZCS - MODIS

http://gmao.gsfc.nasa.gov/research/oceanbiology/
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Constraining a Global Three-Dimensional Ocean Biogeochemical Model
by SeaWiFS Ocean Chlorophyll Data Using a Local SEIK Filter

Smaller error than SeaWiFS

        Lars Nerger, Watson W. Gregg
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Nerger and Gregg, 2007
J. Mar. Syst. (submitted)

Comparison of the surface
chlorophyll from free-running
model, assimilation,  and
SeaWiFS with in situ data for
1998-2004: globally and
separated over 12 major
oceanographic basins.
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MODIS Sampling Aug 2003

Difference (MODIS-assimilation) Aug 2003 No. Days Sampled by MODIS Aug 2003

Assimilation Aug 2003
Sampling biases in MODIS
ocean chlorophyll were
determined by “flying” the
MODIS daily sampling over
the complete daily coverage
provided by data
assimilation.  The results
showed that MODIS annual
mean chlorophyll estimates
are about 8% too high.
Considering that the
maximum interannual
variability in the 10-year
SeaWiFS record is about
3%, this sampling bias
should be considered when
making estimates of global
chlorophyll.

Assimilation helps to identify sampling biases
in MODIS ocean chlorophyll
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