Ocean reanalysis for Climate reconstruction: SODA

Jim Carton

Department of Atmospheric and Oceanic Science, UMD

- Water masses & basic dynamics
- <u>Simple Ocean Data Assimilation</u> construction
- A few results

Atlantic O₂ concentration

Penetration of bottom water into World Ocean (Lynne Talley, SIO)

CFCs along 24N

Note North Atlantic Deep Water moving southward along western boundary

Preliminary F11(pmol/kg) Along 24°N

Penetration of intermediate water masses

Antarctic Intermediate Water

(Talley, 1999)

PV-conserving dynamics in the upper ocean

$$\frac{\partial \varsigma}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v = curl(\tau)$$

Near-surface vorticity source: wind stress curl

QuikSCAT Wind Stress Curl

NCEP Wind Stress Curl

Chelton et al., Science, 2004 http://www.sciencemag.org/cgi/content/full/303/5660/978/FIG2

Two Layer model

Potential vorticity: q=f/h₂

Potential vorticity evaluated along a meridional transect through the Pacific

 $(\varsigma + f) - f \int \frac{\partial w}{\partial z} dt$

Latitude \rightarrow

<u>Simple Ocean Data Assimilation</u> a reanalysis for 1958-2006

The model

$$\upsilon \frac{\partial \vec{U}}{\partial z}(z=0) = winds$$

$$\nabla \cdot \vec{U} + \frac{\partial w}{\partial z} = 0$$

$$\frac{DT}{Dt} = \kappa \nabla^2 T + \upsilon \frac{\partial^2 T}{\partial z^2} + heating$$

$$\frac{DS}{Dt} = \kappa \nabla^2 S + \upsilon \frac{\partial^2 S}{\partial z^2} + salt flux$$

Displaced pole horizontal grid

900x720x40 = 25M grid points

State Variables: u, v, T, S, ...

Time step: 20min (26K ts/yr)

http://climate.lanl.gov/Models/POP/

Numerics

- Upstream
 advection
- Leap frog time differencing
- Separate internal and external modes
- MPI, shared memory
- Output is in netcdf

•Arakawa-C grid in horizontal

Noise introduced with Arakawa cgrid due to insufficient resolution

Sigma coordinate transport

Model details

- Mixing
 - KPP, bi-harmonic
- Winds
 - ERA40 daily stress
 - QuikSCAT
- Topography
 - Sandwell and Smith (etopo30) with McClean modifications for some passages
- Freshwater flux
 - GPCP precipitation when avail., bulk formula evaporation, seasonal river discharge. Relaxation to clim. salinity under ice.
- Heat flux
 - Bulk formula
- Sea ice
 - Observed monthly cover 1979-
- Tracers → CFCs, ...

Performance on two architectures

Figure 6. Parallel efficiency for the Earth Simulator relative to 16 processors and for the p690 relative to 128 processors in the 0.1 configuration

Absolute performance

Figure 5. Performance in model years per CPU day as a function of processor count for the 0.1 configuration

Assimilation details (I)

 Multivariate two-stage sequential updating algorithm

- Stage I correct bias $\beta^a = \beta^f - \mathbf{L} \left[\omega^o - \mathbf{H} (\omega^f - \beta^f) \right]$

- Stage II correct state $\omega^a = \tilde{\omega}^f + \mathbf{K} \left[\omega^o - \mathbf{H} \tilde{\omega}^f \right]$

Time increment

 10dy IUA {a digital filter}

Mean temperature forecast - obs

Temperature – salinity characteristics

SODA flowdependent background error

Assimilation details (II)

- Error covariances:
 - Flow-dependent, anisotropic, latitude/depth-dependent
- Bias model
 - Empirical, including time-mean, annual and basin-scale components
- Data
 - Hydrography (Levitus 2001 MBTs, XBTs, CTDs, floats, moored thermistor chains, ARGO, etc.)
 - In situ and satellite SST
 - Altimetry
- Available: monthly 1958-2001 a 0.5°X0.5° grid http://apdrc.soest.hawaii.edu
 - 5-day averages at the surface
 - 5 day averages from 5S to 5N (T, S, u, v)

Profile network

1960-1969

30'E 60'E 90'E 120'E 150'E 180'W 150'W 120'W 90'W 60'W 30'W 0' 30'E

1970-1979

30'E 60'E 90'E 120'E 150'E 180'W 150'W 120'W 90'W 60'W 30'W 0' 30'E

Global hydrographic observations vs depth

How do we handle changes in the data types? Data cleaning (droprate errors)?

Some Comparison data

- Tracers
- Velocity
 - Drifters
 - Time series
 - ADCP cruise tracks
- Cryospheric data:
 - sea ice distribution consistent with the winds
 - Information about heat/freshwater and/or SST/S
- Color

SODA/TAO Comparisons Variable = u, Lat = 0n, Lon = 140w

Comparison to independent observations

Zonal velocity 0N, 110W

Comparison of observed and analysis sea level at Naha, Japan

Mean Volume

Transport

Passage	Obs	SODA1.2	SODA1.0
ACC-Drake (Peterson, 1988)	123+-15	155	144
Kuroshio (Wimbush, 1999)	63	40	41
Gulf Stream at Hatteras (Hogg, 1992)	45	48	48
Florida Straits (Leaman et al., 1987)	31+-3	26	26
Agulhas (Bryden et al. 2003)	70+-4	68	69
Indonesian Throughflow (Meyers, 1995)	12	15	13
Denmark Straits		4.9	6
Antilles (Wilson and Johns, 1997)	9.5+-3	19	18

AVISO combined altimeter sea level

Altimeter RMS sea level (20mo)

Reanalysis sea level

SODA-POP 1.2 RMS sed level

Bermuda Atlantic Time series

Seasonal NCEP DD=0.03 90N 60 N MLD 30N EQ 30S 60S 120E 120W 6ÔE 180 -6Ó₩ n 90N · SODA-POP DD=0.03 60 N 30 N EQ 30S 60**S** -120E 180 120W 6ÓW 6ÓE Ĥ 90N -LODYC DD=0.03 60 N 30 N EQ 30S 60S 6ÓE 120E 180 1200 војм

10 25

50

75 100 125 150 175 200 225 250 300

Mixed Layer Depth (climatology aug)

Variability of the ocean's climate

• Focus on warming signal in the ocean

Relative Sea Level Rise at New York City

Observed warming of Atlantic along 24N

Heat storage 1988-92 minus 1970-74 from Levitus et al. (2000) {redone 04}

0/300m

0/3000m

Analysis	In situ data	Satellite and altimetry data	Model forcing	Analysis procedu re
SODA 1.4.2 (1962-2001) [<i>Carton and Giese</i> , 2006]	WOD 2001 temperature and salinity profiles, real-time temperature observations from NODC/NOAA archive, TAO/Triton mooring array and ARGO drifter observations	NOAA/NASA AVHRR SST data and ERS 1/2, TOPEX/POSE IDON, JASON altimeter data	ERA 40 winds	10-day assimilati on cycle with Increment al Analysis Update
Willis (1993-2005) [Willis et al., 2004]	WOD 2001, GTSPP, WOCE and ARGO in situ profiles	TOPEX/POSEIDON , Jason1 and ERS 1/2 altimetric data	N/A	A "difference estimate"
Levitus (1955-2003) [<i>Levitus et al.</i> , 2005]	WOD 2001 plus real-time and delayed-mode temperature profiles from GTSPP	N/A	N/A	Objective analysis
INGV (1962-2001) [<i>Davey</i> , 2006]	WOD 2001 supplemented with WOCE, Australian XBT data, PMEL CTD reports and GTSPP	GEOSAT,TOPEX/ POSEIDON, ERS 1/2, Jason-1 and ENVISAT altimetric data	Levitus climatology, ERA 40 climatological fluxes	SOFA
CERFACS (1962-2001) [<i>Davey</i> , 2006]	WOD 2001 supplemented with WOCE, Australian XBT data, PMEL CTD reports and GTSPP	GEOSAT,TOPEX/ POSEIDON, ERS 1/2, Jason-1 and ENVISAT	Levitus climatology, ERA 40 climatological fluxes	3DVar
UKOI (1962-1998) [<i>Davey</i> , 2006]	WOD 2001 supplemented with WOCE, Australian XBT data, PMEL CTD reports and GTSPP	GEOSAT,TOPEX/ POSEIDON, ERS 1/2, Jason-1 and ENVISAT	Levitus climatology, ERA 40 climatological fluxes	OI
GFDL CM2.0 and CM2.1 models [Delworth et al., 2006]	N/A	N/A	1860 values for solar, land cover, greenhouse gases	Coupled Model

Estimates of global heat storage

A. Santerelli, unpublished, 2007

0-700m NA heat content anomalies

-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

Sea level trend 1993-2001

Topex/Poseidon sea level

*Altimetry not included

Prospects for a 100yr ocean reanalysis

Anomaly Correlation Skill of 700 mb analyses using Ensemble Filter and only Surface Pressure Observations

Centennial ocean reanalysis relies fundamentally on a corresponding atmospheric reanalysis

Fes. 6. Local anomaly correlation of Dec 2001 4-times-daily analyses from the full NCEP-NCAR reanalysis and (left) 1905 and (right) 1935 assimilation experiments using the ensemble filter. Correlations are shown for (a), (a) 700-mb geopatential beight; (b), (f) 700-mb renal wind; and (c), (g) 700-mb meridional wind. Colors in the bottom panels indicate the number of surface pressure observations used in each $2.5^* \times 2.5^*$ grid box.

In situ SST Observations

Expansion of the profile network

Some References

- Carton, J.A., G.A. Chepurin, X. Cao, and B.S. Giese, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995, Part 1: methodology, *J. Phys. Oceanogr.*, **30**, 294-309.
- Carton, J.A., G.A. Chepurin, and X. Cao, 2000b: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995 Part 2: results, *J. Phys. Oceanogr.*, **30**, 311-326.
- Carton, J.A., B.S. Giese, and S. A. Grodsky, 2005: Sea level rise and the warming of the oceans in the SODA ocean reanalysis, *J. Geophys. Res.*, **110**, art# 10.1029/2004JC002817.
- Carton, J.A., and B.S. Giese, 2007: A reanalysis of ocean climate using SODA, Mon. Wea. Rev., accepted.
- http://www.clivar.org/organization/gsop/synthesis/synthesis.php