
Remote Sounding with Advanced Infrared and 
Microwave Instruments

Chris Barnet
NOAA/NESDIS/STAR

University of Maryland, Baltimore County (Adjunct Professor)
AIRS Science Team Member

NPOESS Sounder Operational Algorithm Team Member
GOES-R Algorithm Working Group – Chair of Sounder Team

NOAA/NESDIS representative to IGCO

Wednesday  July 25, 2007
Workshop on Applications of Remotely Sensed 

Observations in Satellite Data Assimilation



2

Sounding Theory Notes for the 
discussion today is on-line

voice: (301)-316-5011               email: chris.barnet@noaa.gov
ftp site: ftp://ftp.orbit.nesdis.noaa.gov/pub/smcd/spb/cbarnet/
..or..   ftp ftp.orbit.nesdis.noaa.gov, cd pub/smcd/spb/cbarnet
Sounding NOTES, used in teaching UMBC PHYS-741: Remote Sounding 
and UMBC PHYS-640: Computational Physics (w/section on Apodization)

~/reference/rs_notes.pdf

~/reference/phys640_s04.pdf
These are living notes, or maybe a scrapbook – they are not textbooks.

For an excellent text book on the topic of remote sounding is:

Rodgers, C.D. 2000.  Inverse methods for atmospheric 
sounding: Theory and practice.  World Scientific Publishing 
238 pgs
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Topics for Lectures

• Monday   July 23, 2007
– Introduction to AIRS & IASI and our plans to use operational sounders 

to retrieve atmospheric and surface products.
– Introduction to Sounding Methodology

• Cloud clearing
• Statistical Regression Retrievals

• Tuesday   July 24, 2007
– Sidebar: Comparison of Dispersive and Interferometric Instruments
– Introduction to Sounding Methodology (continued)

• The forward model: Converting state vector to radiances.
• The inverse problem: Converting radiances to a state vector.

• Wednesday  July 25, 2007
– Introduction to Sounding Methodology (continued)

• Vertical Averaging Kernels & Error Covariance Matrices
– Validation of Products
– Atmospheric Carbon Retrievals
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Simplified Flow Diagram of AIRS 
Science Team Algorithm

Climatological
First Guess for all 

products

Initial Cloud 
Clearing, ηj, Rccr

IR Regression for 
Ts, ε(ν), T(p), q(p)

IR Physical Ts, 
ε(ν), ρ(ν)

Microwave 
Physical for T(p), 
q(p), LIQ(p), ε(f)

Improved Cloud 
Clearing, ηj, Rccr

Final Cloud 
Clearing, ηj, Rccr

IR Physical CO(p)

IR Physical HNO3(p)

IR Physical CH4(p)

IR Physical CO2(p)

IR Physical Ts, 
ε(ν), ρ(ν)

IR Physical T(p)

IR Physical T(p)

IR Physical Ts, 
ε(ν), ρ(ν)

IR Physical q(p)

IR Physical O3(p)

IR Physical N2O(p)

MIT

RET

FG Note: Physical retrieval steps that 
are repeated always use same 
startup for that product, but it uses 
retrieval products and error 
estimates from all other retrievals.

CCR
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1DVAR versus AIRS Science Team 
Method

In-situ validation and satellite inter-comparisons indicate 
that this method is robust and stable.   There are still 
spectroscopy and algorithm improvements to work out.

Has never been done simultaneously with clouds, 
emissivity(ν), SW reflectivity, surface T, T(p), q(p), O3(p), 
CO(p), CH4(p), CO2(p), HNO3(p), N2O(p) – if any of 
these are constant, then it is no longer simultaneous.

State matrices are small (largest is 25 T(p) parameters) and 
covariance matrices of the channels subsets are quite small.   
Very fast algorithm.  Encourages using more channels.

This method has large state matrices (all parameters) and 
covariance matrices (all channels used).  Inversion of these 
large matrices is computationally expensive.

Regularization can be reduced (smoothing terms) and does 
not require a-priori statistics for most geophysical regimes.

Regularization must include a-priori statistics to allow 
mathematics to separate the variables and stabilize the 
solution.

A-priori can be simple, since this method is very stable.A-priori must be rather close to solution, since state variable 
interactions can de-stabilize the solution.

Each parameter is derived from the best channels for that 
parameter (e.g., derive T(p) from CO2 lines, q(p) from H2O 
lines, etc.)

Each parameter is derived from all channels used (e.g., can 
derive T(p) from CO2, H2O, O3, CO, … lines).

Error covariance is computed for all relevant state variables 
that are held fixed in a given step.   Retrieval error 
covariance is propagated between steps.

Error covariance includes only instrument model.

Solve each state variable (e.g., T(p)), separately.Solve all parameters simultaneously

AIRS Science Team ApproachAIRS Science Team Approach1DVAR1DVAR
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Some Final Thoughts on Remote Sounding 
Approaches

• This discussion isn’t new.   It has been going on for more than 30 
years!

• It really boils down to Physics versus Statistics – although in the 
modern era this distinction has been blurred.
– Regression and Neural Network Approaches
– Use of geophysical covariance to regularize the under-determined problem.

• Take a look at discussion at the end of Rodgers, C.D. 1977. 
“Statistical principles of inversion theory.” in ”Inversion Methods 
in Atmospheric Remote Sounding” (ed. Deepak) p.117- 138.

• This discussion is also transcribed in Section 22.2 of my notes 
(reference/rs_notes.pdf).

• As in all things, the answer may lie in the middle ground.    We
are exploring adding some a-priori statistics to help in certain 
geophysical domains (e.g., lower boundary layer T(p), etc.) and 
we may explore some simultaneous retrievals (T(p)/emissivity, 
etc.) to improve the products.
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Retrieval Averaging Kernels (11 slides)

See

1)Rogers 2000, pg. 43-44 & pg. 83-85

2)Rodgers and Conner 2003

3) My notes – section 8.12.1
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We Can Compute a Averaging 
Kernel via Brute Force

1. Start with the retrieval state, X0
2. Perturb X0 in some atmosphere layer by δXk
3. Compute change in radiance, R(X0+δXk)-R(X0)
4. Compute a new retrieval, Xk, using the perturbed 

radiance.
5. Xk-X0 is the jth column of Akj
6. Goto Step 1 and compute another row of A

This method has the advantage that the entire 
system, including cloud clearing, regression, and 
multiple-interacting and non-linear retrieval steps, 
can be analysed.
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The “Brute Force” Averaging provided a 
Sanity test for Internal Averaging Functions

A = G*KAjk & trace{A} via Brute Force for T(p)
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Using the Inversion Equation to 
Derive Vertical Averaging Kernels

• Our Retrieval Equation Can Be Written As

• Note that this equation is really a weighting average of 
the state determined via radiances and the a-priori.
– The radiance covariance can be written as KTN-1K, in 

geophysical units, and
– The product covariance is given by [KTN-1K + C-1]-1
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We can Derive the Averaging Kernel 
from Our Minimization Equation

• As we approach a solution, we can linearize the 
retrieval about a state that is approach the “truth”

• And simplify by replacing the region highlighted in 
green above with the variable G

zero
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Computing the Averaging Kernel

• The vertical averaging kernel is the amount of the 
derived state that came from the radiances

• And I-A is the amount that came from the prior

Retrieval covariance Inverse of a-priori
covariance
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Value of the Vertical Averaging 
Function

• A is the retrieval weighing of the channel kernel functions (think 
of a retrieval operator as an integrator of data)

• A tells you how much the observations were believed.
• I-A tells you how much of the a-priori was believed.
• When comparing other measurements (such as high vertical 

resolution sondes or aircraft) the validation measurements 
– Must have similar vertical smoothing and
– Should be “degraded” by the fraction of the prior that entered the solution 

(i.e., in regimes were we don’t have 100% information content)
• When using AIRS products the A matrix 

– Tells you the vertical correlation between parameters
– Tells you how much to believe the product and where to believe the 

product.
– A-priori assumptions can be removed from the solution if we are in a 

linear domain.
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Error Estimates and Averaging Kernels 
for Temperature, Linear Analysis

Linear Error is Composed Of:
1. Instrument Error
2. Smoothing Term 

(Geophysical Functions)
3. Propagated Error 

Covariance

Actual retrieval error (blue) lies 
within the error estimate 
(red) for most of the 
atmosphere.

Predicted error using exact 
knowledge (magenta) of the 

errors of the Initial state 
error (green) lies on top of 
actual error (blue).   That is, 
retrieval methodology is 
linear enough to propagate 
errors.
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Error Estimates and Averaging Kernels 
for Moisture, Linear Analysis

Actual retrieval error (blue) lies 
within the error bars (red) for 
most of the atmosphere.

Predicted error using exact 
knowledge (magenta) of the 
errors of the initial state (green) 
lies on top of actual error (blue)
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Example #1: We can use averaging kernel to 
optimally smooth the truth for comparisons

Aj,j

“truth”

a-priori

retrieval
“convolved 
truth”

This retrieval is 
only believed 
at the 50% 
level

AIRS CO Product

No information 
from radiances
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Example #2: Comparison of CO2 Product 
and Kawa 2004 Model for April 2005

• At first glance, it looks 
like the retrieval and 
model (used as the 
“truth“ ) do not agree.

• But if we apply the 
averaging kernel to the 
model and we “degrade”
it with the retrieval a-
priori , they agree quite 
well.

• Again, this is because we 
do not have 100% of 
information coming from 
the satellite (this result is 
within the instrument and 
propagated error).

a
jjjjjjj XAIXAX ⋅−+⋅= )(ˆ

,,

X̂
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We Think We Know How To Do This Without 
Serious Impact to Execution Time!

• The “trick” is how to propagate the errors through all 
our steps in a cost effective manner.
– Current methodology is to build an ad-hoc vertical 

correlation and propagate the diagonal of the retrieval error 
covariance.

• BUT – We can compute the full error covariance and 
then decompose it and propagate the full covariance 
(this has been proposed for the version 6 algorithm)
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Validation (17 slides)
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“what is truth”
• Compare to ECMWF & NCEP Analysis (e.g., Susskind, 2005)

– Can compare complete global dataset
– Differences can be model or retrieval errors
– Implicitly validating against all other instruments (all assimilated space-borne, 

sondes, buoy’s etc.) used in analysis
• Compare to Radiosondes, Ozonesondes (e.g., See Tobin, 2006, Divakarla, 2006)

– Only a couple hundred “dedicated” sondes are flown per year.  Usually we fly 2 
sondes so we can see lower and upper air at overpass time.

• Sondes can take 1-2 hours to ascend
• Sondes can drift 100’s of km’s during ascent.

– A few hundred sondes are launched globally per day (usually at synoptic times) that 
are within 300 km and +/- 1 hour of our overpass.

• Different sonde instruments, quality of launches, etc.
• In-situ intensive experiments with sondes, aircraft and LIDAR.

– Have participated in INTEX-NA6 AEROSE, START, MILAGRO, INTEX-B, 
AMMA, and WAVES

• Inter-comparison of satellite products.
– Aqua/AIRS has been compared to Aura/TES/MLS/OMI (8 minutes apart), 

CloudSat/Calipso (75 seconds apart) products.
• Large number of global co-locations of “similar” products.

– Aqua/AIRS has been compared to other satellites (e.g., TOMS, SBUV, CERES)
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The goal of validation is characterize 
accuracy and precision of products.

• Accuracy is the mean difference (bias) between observations and validation dataset.
– BIAS = (1/N)*Σ(X2-X1)
– Long-term characterization of accuracy is of significance in climate applications.

• Precision is the standard deviation (SDV) between observations and validation dataset.
• Uncertainty is the total difference (RMS)

– RMS = (SDV2 + BIAS2)½
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An example of things that go wrong 
with “truth”

These 2 sondes were 
launched 1.5 hours 
apart from same 
location.
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Other issues with Radiosondes
(e.g., see Eskridge et al. 2003)

• Many different types of sensors are used on radiosondes around 
the world.   Therefore, quality of sonde data is site dependent.

• Temperature require corrections due to heating sources other than 
air
– Infrared emission from balloon, clouds, surface
– Solar heating = function of solar zenith angle
– Conduction of hear along wires
– Thermal inertia of sensor – lag time correction.

• Water vapor can require corrections due to evaporation
– Radiosonde sensors (e.g., RS92) are measuring capacitance of a capacitor 

with a humidity sensitive dielectric.
• Contamination from packaging
• Out-gassing of polymer

– Frost-point hygrometer measures optical depth of frost accumulated on 
cold mirror.

Vaisala
RS-92
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Validation and Monitoring of Core 
Products

• Validation of products versus 
operational sonde networks

• Temperature

• Humidity

• Ozone

• Monitoring of radiance 
products.

• Validation and Evaluation core 
product effects on Trace Gas 
Products
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Comparing Measurements is 
inherently difficult

• AIRS instrument is 
extremely stable and can 
be used to test stability of 
in-situ systems

• Figure at right (Strow May 
2005 science team 
meeting) shows day/night 
biases are a function of 
altitude.

• Frost-points are often used 
as a “gold-standard” to 
derive corrections for 
moisture sensors on 
sondes
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Example of In-situ campaign: The Howard 
University Beltsville Research Campus

• Used to validate Aqua/AIRS, Aura/TES, 
EUMETSAT/IASI

• A semi-urban field site
• Mid-Atlantic, urban experiences a 
wide range of meteorological 
conditions
• Provides environment very 
different than ARM sites

• Difficult retrieval site
• heterogeneous terrain
• summertime polluted conditions

• Good for validation case studies 
representative of urban, polluted 
conditions

• how good are the retrievals in the 
vicinity of the US capitol and 
where millions of people live?
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Beltsville Campus Instrumentation

RSS

31m tower
sfc moisture

Raman Lidar

FOX C-band 
weather radar

MWR
C25KT

Radiation

Aerosol-Cloud-Radiation

ALL-SKY

Atmosphere-Surface
GPS

Integrating Research and
Student Training

Air Quality

MDE - Research quality 
air monitoringWind Profiler

Lidar operations
Ozonesonde launch
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Conversion of species from one pressure grid 
to another needs to be done correctly!

• Radiosondes measure water at specific levels (usually 
relative humidity).   Usually 10’s of thousands of 
points are measured in a single assent.

• This can be converted to a mixing ratio at a given level; 
however, there can be a lot of vertical structure (moist 
or dry layers) that are beyond any remote sounding 
instruments capability to measure.

• When comparing measurements it is important to
– Have a common vertical resolution
– Conserve the molecules to be compared (don’t count 

molecules twice).
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Conversion of level to layer 
quantities

• Point measurements, such 
as mixing ratio, are made 
at effective pressure 
levels.

• Radiative transfer & 
conservation of molecules 
in validation requires 
knowledge of the number 
of molecules within a 
layer.

• Layers are defined by 
pressure level boundaries 
interleaved with the 
effective pressure of the 
mixing ratio. Example of a 6 layer vertical 

grid.
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Steps to convert constituent profiles 
from one grid to another.

1. Convert relative humidity or mixing 
ratio to layer column density (LCD) in 
molecules/cm2 in the layer.
– Layers cannot overlap

2. Compute level to space column density
– CD(L) = Σ LCD(i), i ≤ L

3. If necessary, try to make the vertical 
function more linear by taking log’s.

4. This is a monotonically increasing 
function that can be accurately 
interpolated.

5. Pick points that are layer boundaries of 
new pressure grid.

6. Take differences of new CD(L) (or 
log(CD(L))) to obtain new LCD’s.

7. Convert new LCD’s to mixing ratio’s.

0.5 1 1.5 2 2.5 3
x 104

0

5

10

15

z 
[k

m
]

WV [ppmv]

CFH
CFH 1km
TES
TES 1km
AIRS
AIRS 1km
CFH 2km
TES 2km
AIRS 2km

You would think that all researchers could 
agree on an inter-comparison methodology –
think again.   This has been an embarrassing 
problem within the WAVE campaign.
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AIRS and TOMS Northern Polar Night
Mike Newchurch (UAH),  Bill Irion (JPL)

AK

Note: TOMS Ozone derived only when Sun is above horizon
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Calipso/AIRS Intercomparisons
• Kahn et al. 2007 are 

comparing AIRS products 
(red circles) with cloud 
products derived from the 
recently launched Calipso & 
CloudSat

• Calipso/CALIOP is a 1064 
nm & 532 nm LIDAR (0.3 
km footprint, 30 m vertical 
resoluton).

• CloudSat is a microwave 
RADAR.   94 GHz (1.4 x 2.5 
km product with 0.48 km 
vertical resolution).
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Stratospheric-Tropospheric Analysis of 
Regional Transport (START) Experiment

• Laura Pan is PI of START Ozone team
• Nov. 21 to Dec. 23, 2005, 48 flight 

hours using NCAR’s new Gulfstream
V “HAIPER” aircraft.

• Ozone measured with NCAR’s UV-abs 
spectrometer

• NOAA NESDIS supported this experiment with real time AIRS 
L1b & L2 products, including ozone and carbon monoxide.

• Jennifer Wei is the NOAA/NESDIS liason to START team.
• 3 stratospheric fold events were measured during this campaign 
• analysis is in process.
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This is the day the Aura Validation Experiment (AVE) 
mission sampled a tropopause fold near Houston

AIRS Cross-section

Potential Vorticity (PV) 
is an important quantity 

for O3 dynamics

Black Line is Flight Track

Laura Pan, NCAR/ACD
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Example of Laura Pan’s in-situ comparisons 
in dynamic regions (AVE campaign)

AIRS interp
on the flight 
track

B57 in situ

ignore the black 
columns - missing 
data

“Good agreement 
between AIRS and 
in situ between 50-
500 ppb”
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Movies
• WAVES_Launch_18July.avi

– RS-92/Ozonesonde launch on July 18, 2006 from Beltsville MD.
• AIRS_AGU_video v2_720x480.mov

– “Probably the best water vapor dataset available.”   Andrew 
Dessler

– “The AIRS data is a key link in providing observations at pretty
much unprecedented spatial and time scales over regions of the 
planet where we have never had observations of the planet 
before.”  Andrew Gettelman

– “AIRS is really the first global satellite dataset that has a very 
high quality, both water vapor and ozone, in both data quality 
and spatial/temporal resolution that can contribute in tropopause
regions.”  Laura Pan
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Atmospheric Carbon Retrievals

1.Brief introduction to all 
AIRS/IASI trace gas products.

2.Show example of AIRS CO2 
product.
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Trace Gas Product Potential from 
Operational Thermal Sounders

Haskins, R.D. and L.D. Kaplan 1993
emissivity-50%790-805CCl4

emissivity-20%900-940CF2Cl (F12)

emissivity-20%830-860CFCl3 (F11)

H2O
H2O,CO

≈15% ??1250-1315
2180-2250
2520-2600

N2O

emissivity
H2O,CH4,N2O

1.2550% ??860-920
1320-1330

HNO3

H2O,HNO3< 11000%1340-1380Volcanic SO2

H2O,O3≈ 10.5% ?680-795
2375-2395

CO2

H2O,HNO3,N2O≈ 11.5%1250-1370CH4

H2O,N2O≈ 115%2080-2200CO

H2O,emissivity1.2510%1025-1050O3

T(p)4-615%1200-1600H2O

Interfering Gasesd.o.f.PrecisionRange (cm-1)gas

Product
Available
@ NASA 

DAAC

Research 
Product 

Available at 
NOAA 

NESDIS

Held 
Fixed
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Retrieval of Atmospheric Trace Gases
Requires Unprecedented Instrument Specifications

• Need Large Spectral Coverage (multiple bands) & High 
Sampling (currently, we use 1680 AIRS and 14 AMSU 
channels in our algorithm)
– Increases the number of unique pieces of information

• Ability to remove cloud and aerosol effects.
• Allow simultaneous retrievals of T(p), q(p), O3(p).

• Need High Spectral Resolution & Spectral Purity
– Ability to isolate spectral features → vertical resolution
– Ability to minimize sensitivity to interference signals..

• Need Excellent Instrument Noise & Instrument Stability
– Low NE∆T is required.
– Minimal systematic effects (scan angle polarization, day/night 

orbital effects, etc.) 
• Need accurate T(p) and q(p) determination (upstream 

algorithm must be accurate and stable).
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Example of Trace Gas Product Suite
(Ascending Orbit, 1:30pm, Single Day)

NCEP PV/Wind 20051201_18 at 300 hPa

Stratospheric air masses (colored yellow in NCEP 
PV figure, where PVU ≥ 2) can be seen in AIRS 
upper tropospheric O3, CO, and HNO3 in the 
figures above. The H2O figure is scaled to show 
tropical convective features.
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Utility of Trace Gas Correlations

• To identify interesting dynamical regimes for scientific 
study.
– Identify regions of atmospheric stratospheric/tropospheric

exchange (STE)
– Identify source regions of trace gases (e.g., biomass burning, 

pollution).
– Identify regions of interesting transport (e.g., Brewer Dobson 

circulation of CH4 and CO2) or photochemistry (e.g., O3 
production from CO).

• A diagnostic tool to help improve satellite 
measurements of trace gases

• Problems in specific situations (e.g., deserts, topography, isothermal)
• Improper spectral separation of gases (e.g., HNO3/CH4)
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29 month time-series of AIRS products
South America Zone (-25 ≤ lat ≤ EQ , -70 ≤ lon ≤ -40)
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AIRS operational products confirm tropospheric ozone 
production from biomass burning as seen by TES

Version 5.0 (w/o O3 regression)

See Zhang et .al 
JGR 2007 for 
similar 
comparison using 
TES
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Tracer-Tracer Correlations help 
define UT/LS Mixing

See L. Pan et al. JGR 2007 for details of methodology and utility in product 
characterization. Chemical discontinuity at tropopause caused by changes in 
thermal and dynamic fields (Brewer-Dobson circulation)

UT/LS Mixing

Lower Stratospheric Products

Upper 
Tropospheric 

Products

Expectation from 
aircraft obs and models

AIRS Retrievals
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Motivation for Carbon Trace Gases

• Fossil fuel emissions are rapidly increasing the amount of 
atmospheric carbon dioxide (CO2) that results in a increase in the 
energy of the atmosphere.
– Understanding sources and sinks of atmospheric CO2 and the transport and 

lifetime in the atmosphere is a critical component of understanding climate 
change.

• Atmospheric methane (CH4) has a larger climate impact
– Quantifying emissions from wetlands, agriculture, landfills, fires, etc. is 

important to understanding the atmospheric concentration.
– Regulating methane emissions could mitigate a significant portion of the 

anthropogenic climate impact.
– Rapid warming in polar regions has the potential of a large positive feedback 

due to melting of Pleistocene-age ices and rapid emissions of large amounts 
of CH4

• Carbon monoxide (CO) and ozone (O3) can help distinguish 
sources and of atmospheric carbon and characterize transport.
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Comparison of Different Satellite 
Methods for Retrieval of CO2

Measure 
independently.

Solve for aerosol 
microphysics

Minimal impact to 
mid-trop.

Aerosols

Main utility

Data availability

Interference

Surface Issues

Clouds

Measures

Source Function

Carbon budgetReduce uncertainty of 
the carbon budget

Improve transport
Upper boundary for 
OCO.

Future missionsResearch grade, 2-3 
mission, no follow-on

20+ years, launch 
almost guaranteed

Very weak 
interference

Weak interaction 
with T(p), q(p)

Strong interaction 
with T(p), q(p)

Need reflectivity, ρNeed reflectivity, ρVery little sensitivity

Clear or Solve for 
Microphysics

Clear or Solve for 
Microphysics

Correction via cloud 
clearing

Total Column/ProfileTotal ColumnMid-trop column

LASERSunPlanck Function

ActivePassive-SolarPassive-Thermal
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Utilization of thermal product requires 
knowledge of vertical averaging

• Thermal instruments measure 
mid-tropospheric column
– Peak of vertical weighting is a 

function of T profile and water 
profile and ozone profile.

– Age of air is on the order of weeks 
or months.

– Significant horizontal and vertical 
displacements of the trace gases 
from the sources and sinks.

• Solar/Passive instruments (e.g., 
SCIA, OCO) & laser approaches 
measure a total column average.
– Mixture of surface and near-surface 

atmospheric contribution
– Age of air varies vertically.
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LW Thermal CO2 Kernel Functions are also 
Sensitive to H2O, T(p), & O3(p).

Mid-Latitude
TPW = 1.4 cm

Polar
TPW = 0.5 cm

Isothermal vertical 
structure weakens 

sensitivity

Tropical
TPW = 2.5 cm

moisture optical 
depth pushes peak 
sensitivity upwards
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Why are CO2 channel functions broad & all at the same 
altitude while T(p) functions have profile information?

• Spectroscopy: The CO2 lines are strong narrow lines.   Temperature 
affects the width (and hence the channel transmittance) while # of 
CO2 molecules affects the strength.  Once the line is saturated (near 
the surface, where p is large) we loose sensitivity.

• Radiative transfer: The temperature enters both in the absorption 
coefficient and in the Planck function.
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… And many groups are working on 
AIRS CO2 algorithms

T(p) = ECMWFClearUnconstrained LSQLarrabee Strow

Temperature/CO2
Separation

Type of 
Scenes

MethodologyP.I.

Clear & 
Cloudy

Clear

Clear & 
Cloudy

Clear

Clear

Multi-spectral IR (15 & 4 µm) 
and 57 GHz (Aqua/AMSU)

Regularized LSQ
(optimal estimation)

Chris Barnet

T(p) = ECMWFNeural NetworkWilliam Blackwell

Multi-spectral (15 vs 4 µm) 
and 57 GHz (Aqua/AMSU)

Partial Vanishing 
Derivatives
(unconstrained LSQ)

Moustafa Chahine

57 GHz O2 (all AMSU’s)
&  radiosonde

4DVARRichard Engelen

57 GHz O2 (Aqua/AMSU)Neural NetworkAlain Chédin & 
Cyril Crevoisier
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Sensitivity Analysis for CO2 
retrieval in 15 µm band

Knj en
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Sensitivity Analysis for CO2 
retrieval in 4 µm band
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Comparisons to ESRL/GMD aircraft 
observations (Bakwin, JGR, 2003)

• Comparison of AIRS  & ESRL/GMD flask observations..
• Usually ≥ 5 hour time difference between aircraft and AIRS observations.
• Aircraft altitude is typically ≤ 7 km.
• Aircraft measures a small spatial region while it spirals downward.

• Aircraft measurement is vertically integrated to maximum flight 
height to emulate the thermal sounder measurement.

• Retrieval is spatially and temporally averaged of ≈ 50 “good” 
retrievals to achieve desired performance.
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Comparison of NOAA CO2 product 
with in-situ aircraft at Carr, CO



55

Comparison of NOAA CO2 Product 
with in-situ Aircraft at Park Falls, WI

Example of problem in regions of CO2 drawdown
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Comparison of NOAA CO2 with 
ALL ESRL in-situ Aircraft

Excluding mid-summer casesAll Observations

0.5% SDV from space!!Low values of CO2 are not seen in AIRS retrieval
1. Aircraft samples a smaller volume (centered over forest) and, 

therefore, captures more of the photosynthetic drawdown
2. Difference in sampling time/diurnal effects (not likely).
3. Over-regularization
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Taylor Diagrams (JGR 106, p.7183) 
illustrates skill in NOAA CO2 product

All Observations Excluding mid-summer cases

• Radius represents normalized standard deviation of AIRS product
• Angle is the correlation between AIRS product and in-situ aircraft
• Beginning of arrow is first guess, end of arrow is AIRS product
• Contours represent a “skill score” (Taylor Eqn. 14).
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NOAA AIRS CO2 Product is 
Still in Development

• Measuring a product to 0.5% is inherently difficult
– Empirical bias correction (a.k.a. tuning) for AIRS is at the 1 K level and can 

affect the CO2 product.
– Errors in moisture of ±10% is equivalent to  ±0.7 ppmv errors in CO2.
– Errors in surface pressure of ±5 mb induce ±1.8 ppmv errors in CO2.
– AMSU side-lobe errors minimize the impact of the 57 GHZ O2 band as a T(p) 

reference point.
– Bottom Line: Core product retrieval problems must be solved first.

• Currently, we can characterize seasonal and latitudinal mid-
tropospheric variability to test product reasonableness.

• The real questions is whether thermal sounders can contribute to the 
source/sink questions.
– Requires accurate vertical & horizontal transport models 
– Having simultaneous O3, CO, CH4, and CO2 products is a unique contribution 

that thermal sounders can make to improve the understanding of transport.
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So maybe the utility of thermal 
sounders has yet to be exploited

• AIRS has produces the first global tropospheric measurement of 
CO2 & CH4.

• AIRS, IASI, and CrIS should provide a long-term dataset.
• AIRS has a unique capability to inter-compare tropospheric 

products of temperature, water, O3, CO, CH4, and CO2.
• We expect to learn new things from this dataset.
• We are exploring diurnal signals and hope to identify large 

pollution or biosphere events over the lifetime of these instruments.
• We are exploring the use of trace gas correlations within the AIRS 

products as an analysis to help identify sources of trace gases.
• We want to work with transport modelers to compare our product 

to a realistic emission scenario for CO2 with proper vertical 
weighing functions.

• Other ideas?
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For more information:
http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/index.html

• Trace GAS web-pages 
allow a quick look at the 
trace gas products as a 
function of geography, 
time, and comparisons 
with in-situ datasets.

USERID & PASSWORD

Request via e-mail:

chris.barnet@noaa.gov
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