



University of Maryland, 2007

# Introduction to Data Assimilation Research at NRL &

# Flow Adaptive Error Covariance Localization

2 Aug, 2007

By

Craig H. Bishop

NRL, Marine Meteorology Division, Monterey, CA





- Intro to NRL
- NAVDAS and NAVDAS-AR
- Estimation of ob impact using adjoints
- Adaptive error covariance localization using Ensemble COrrelations Raised to A Power (ECO-RAP) and its use in the LETKF
- Conclusions



# **NRL/FNMOC Forecast Suite**



- NOGAPS Navy Operational Global Atmospheric Prediction System
  - Provides input/boundary conditions for
    - mesoscale, ocean, wave and ice prediction models,
    - ensemble forecasting system
    - Aircraft and ship routing programs
    - tropical cyclone forecast model (GFDN)
    - Aerosol forecasting model, NAAPs
    - Chemistry model, CHEM2D-OPP
- COAMPS<sup>®\*</sup> Coupled Ocean/ Atmosphere Mesoscale Prediction System
  - nonhydrostatic; globally relocatable, nested grids; explicit prediction of moisture variables
  - 5-10 different operational areas
  - drives ocean, wave, aerosol and EM propagation models
  - Ensemble forecasting system under development
- Both models used for basic research, predictability studies, adjoint sensitivity studies, adaptive observation-targeting

\* COAMPS® is a registered trademark of the Naval Research Laboratory, Monterey CA Approved

Approved for public release



#### THE FUTURE OF NAAPS Integrated into NOGAPS



Predictive tropospheric and stratospheric aerosol <u>fully embedded</u> within NOGAPS. <u>Fully interactive physics</u> – aerosol, cloud formation, and radiative transfer. Aerosol <u>coupled to wave model</u>; salt production from WW3. Aerosol data assimilation integrated into <u>NAVDAS-AR</u>. Aerosol data assimilation will include UV and VIS <u>radiances</u>. <u>Aerosol impacts</u> will be included in radiance data assimilation for NWP.

NAAPS Salt Mass Concentration (ug-m\*\*3)

00:00Z 10 May 2006 NAAPS Salt Optical Depth











Total Ozone [DU]

NRL Space Science Division "NOGAPS-ALPHA provides a state-of-the- art stratosphere for NWP applications"

"We get a much improved split vortex in the +5 day forecast by using

- (a) new T239L54 NOGAPS-ALPHA
- (b) new 3DVAR-based reanalysis (NAVDAS)

CHEM2D-OPP has to date proved superior to photochemistry schemes used in the ECMWF IFS, [former] NCEP GFS, & NASA GEOS5 & GISS models.

125

This work was funded by the JCSDA and was delivered to NCEP GFS and NASA GMAO as well as NOGAPS.







#### **Special Partnership with Primary Customer FNMOC**



- **Seamless transition from research to operations.**
- Operational problems can be quickly addressed by NRL.
- Complex operational systems are used in basic research.
- Operational requirements can influence basic research.





- Integrated wave model SWH assimilation and QC code in NCODA
- Completed QC of altimeter SWH data and free run of WW3 model as control
- Performing wave model assimilation runs for pre-beta validation
- Verification includes independent buoys and yet-to-be-assimilated altimeter data – SWH, mean wave period, and buoy spectra vs. model spectra



Assimilation via 6-Hour Sequential Incremental Update Cycle



# **NAVDAS-AR\***

$$\mathbf{x}_{i}^{a} = \mathbf{x}^{f} + \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} \left(\mathbf{H}_{i} \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} + \mathbf{R}\right)^{-1} \left(\mathbf{y} - \mathbf{H}_{i} \mathbf{x}^{f}\right)$$

$$Xu \text{ and Daley 2002, Tellus}$$

$$\mathbf{x}_{u}^{a} = \mathbf{x}^{f} + \mathbf{P}_{o}^{b} M_{i}^{T} \mathbf{H}_{i}^{T} \left(\mathbf{H}_{i} M_{i} \mathbf{P}_{o}^{b} M_{i}^{T} \mathbf{H}_{i}^{T} + \mathbf{R}\right)^{-1} \left(\mathbf{y} - \mathbf{H}_{i} \mathbf{x}^{f}\right), \text{ where } \mathbf{P}_{i}^{f} = M_{i} \mathbf{P}_{o}^{b} M_{i}^{T}$$

$$\mathbf{P}_{i}^{f} \approx \mathbf{P}^{f} = \left\langle \left(\mathbf{x}^{f} - \mathbf{x}^{t}\right) \left(\mathbf{x}^{f} - \mathbf{x}^{t}\right)^{T} \right\rangle, \mathbf{x}^{a} = \text{analysis, } \mathbf{x}^{f} = \text{forecast, } \mathbf{x}^{t} = \text{truth, } \mathbf{y} = \text{obs}$$

Step 1: Use CG to solve

$$\left(\mathbf{H}_{i}\mathbf{P}_{i}^{f}\mathbf{H}_{i}^{T}+\mathbf{R}\right)\mathbf{z}_{i}=\left(\mathbf{y}-\mathbf{H}_{i}\mathbf{x}^{f}\right)$$
  
so that

$$\mathbf{z}_{i} = \left(\mathbf{H}_{i}\mathbf{P}_{i}^{f}\mathbf{H}_{i}^{T} + \mathbf{R}\right)^{-1}\left(\mathbf{y} - \mathbf{H}_{i}\mathbf{x}^{f}\right)$$
  
Step 2: Post-multiply  
$$\mathbf{x}_{i}^{a} = \mathbf{x}^{f} + \mathbf{P}_{i}^{f}\mathbf{H}_{i}^{T}\mathbf{z}$$
  
Step 3: Iterate outer loop  
Set i=i+1 and go to Step 1.





# **NAVDAS-AR\***



- Let  $\mathbf{L}_{ij}$  be the TLM around the ith trajectory that maps perturbations
- from time step j to time step j+1.
- Let  $\mathbf{Q}_u$  be the covariance of model errors associated with the time step that are uncorrelated with previous mosel errors.
- Let  $\mathbf{Q}_c$  be the covariance of model errors across the assimilation window.

For, say, a 2-time step assimilation window, NAVDAS-AR incorporates this information using

$$\mathbf{P}_{i}^{f} = M_{i} \mathbf{P}_{o}^{b} M_{i}^{T} = \begin{bmatrix} \mathbf{P}_{o}^{b} & \mathbf{P}_{o}^{b} \mathbf{L}_{i0}^{T} & \mathbf{P}_{o}^{b} \mathbf{L}_{i0}^{T} \mathbf{L}_{i1}^{T} \\ \mathbf{L}_{i0} \mathbf{P}_{o}^{b} & \mathbf{L}_{i0} \mathbf{P}_{o}^{b} \mathbf{L}_{i0}^{T} + \mathbf{Q}_{u} & \left(\mathbf{L}_{i0} \mathbf{P}_{o}^{b} \mathbf{L}_{i0}^{T} + \mathbf{Q}_{u}\right) \mathbf{L}_{i1}^{T} \\ \mathbf{L}_{i1} \mathbf{L}_{i0} \mathbf{P}_{o}^{b} & \mathbf{L}_{i1} \left(\mathbf{L}_{i0} \mathbf{P}_{o}^{b} \mathbf{L}_{i0}^{T} + \mathbf{Q}_{u}\right) & \left(\mathbf{L}_{i1} \left(\mathbf{L}_{i0} \mathbf{P}_{o}^{b} \mathbf{L}_{i0}^{T} + \mathbf{Q}_{u}\right) \mathbf{L}_{i1}^{T} + \mathbf{Q}_{u}\right) \end{bmatrix} + \mathbf{Q}_{c}$$

In other words, NAVDAS-AR is a comprehensive weak-constraint 4D-Var DA scheme.





- When model error included in 4D-Var, best estimate is *not* a model trajectory as it is in strong constraint 4D-VAR
- What to do?
- NRL's current approach is to simply linearize about the best state estimate and propagate error covariances about it. This approach to the outer loop is often called the "Picard" iteration.
- See Y. Tremolet's presentations for alternatives.









Forecasts produced with NAVDAS-AR are better than the ones produced with the FNMOC OPS for the winter of 2006.



**Maximum Likelihood (ML) Formulation** 



MEV formulation:

$$J = \frac{1}{2} \mathbf{z}_{i}^{T} \left( \mathbf{H}_{i} M_{i} \mathbf{P}_{0}^{b} M_{i}^{T} \mathbf{H}_{i}^{T} + \mathbf{R} \right) \mathbf{z}_{i} - \mathbf{z}_{i}^{T} \mathbf{y}', \text{ where } \mathbf{y}' = \left( \mathbf{y} - \mathbf{H}_{i} \mathbf{x}^{f} \right)$$
$$\frac{\partial J}{\partial \mathbf{z}_{i}} = \left( \mathbf{H}_{i} M_{i} \mathbf{P}_{0}^{b} M_{i}^{T} \mathbf{H}_{i}^{T} + \mathbf{R} \right) \mathbf{z}_{i} - \mathbf{y}'$$

$$\mathbf{x}_i^a - \mathbf{x}^f = \mathbf{x}' = \boldsymbol{M}_i \, \mathbf{P}_0^b \boldsymbol{M}_i^T \mathbf{H}_i^T \mathbf{z}$$

ML formulation:

$$J = \frac{1}{2} \Big[ \mathbf{w}_i^T \mathbf{w}_i + \mathbf{w}_i^T \mathbf{U}^T M_i^T \mathbf{H}_i^T \mathbf{R}^{-1} \mathbf{H}_i M_i \mathbf{U} \mathbf{w}_i - 2\mathbf{y}'^T \mathbf{R}^{-1} \mathbf{H}_i M_i \mathbf{U} \mathbf{w}_i + \mathbf{y}'^T \mathbf{R}^{-1} \mathbf{y} \Big], \text{ where } \mathbf{U} \mathbf{U}^T = \mathbf{P}_0^b$$
$$\frac{\partial J}{\partial \mathbf{w}_i} = \Big( \mathbf{U}^T M_i^T \mathbf{H}_i^T \mathbf{R}^{-1} \mathbf{H}_i M_i \mathbf{U} + \mathbf{I} \Big) \mathbf{w}_i - \mathbf{U}^T M_i^T \mathbf{H}_i^T \mathbf{R}^{-1} \mathbf{y}'$$
$$\mathbf{x}_i^a - \mathbf{x}^f = \mathbf{x}' = M_i \mathbf{U} \mathbf{w}_i$$





- If error propagation is linear, error distributions are Gaussian and exact minima of cost-functions are found, then methods would be identical.
- Given that the outer loop in MEV is very similar to that in ML, can the outer loop introduce significant differences?
- Satellite observation errors have non-trivial correlations across space, time and channels.
- The MEV formulation does not require a precise inverse of the observation error covariance matrix.
- In order to rigorously handle these correlations, does the ML formulation require the exact inverse of the observation error covariance matrix?
- It is trivial to find the adjoint/gradient of the MEV formulation.
- Does the ML adjoint require line-by-line derivation?



Assuming linear error propagation

$$\boldsymbol{\varepsilon}_{24|-6}^{f} = \mathbf{M}\boldsymbol{\varepsilon}_{0|-6}^{f}, \ \boldsymbol{\varepsilon}_{24|0}^{f} = \mathbf{M}\boldsymbol{\varepsilon}_{0|-6}^{f} + \mathbf{M}\mathbf{K}\mathbf{v} \quad \left[\mathbf{K} = \mathbf{M}\mathbf{P}_{i}^{f}\mathbf{H}_{i}^{T}\left(\mathbf{H}_{i}\mathbf{P}_{i}^{f}\mathbf{H}_{i}^{T} + \mathbf{R}\right)^{-1}, \ \mathbf{v} = \left(\mathbf{y} - \mathbf{H}_{i}\mathbf{x}_{0|-6}^{f}\right)\right]$$

The difference in summed squared forecast error due to obs at 6 z is

 $J = \left(\varepsilon_{24|0}^{fT}\varepsilon_{24|0}^{f}\right) - \left(\varepsilon_{24|-6}^{fT}\varepsilon_{24|-6}^{f}\right) = e_{24} - e_{30} = \left(\varepsilon_{24|0}^{fT} + \varepsilon_{24|-6}^{fT}\right)\left(\varepsilon_{24|0}^{f} - \varepsilon_{24|-6}^{f}\right)$  $= \left( \varepsilon_{24|0}^{fT} + \varepsilon_{24|-6}^{fT} \right) \mathbf{M} \left( \varepsilon_{0|0}^{f} - \varepsilon_{0|-6}^{f} \right)$ OBSERVATIONS ASSIMILATED  $= \left( \varepsilon_{24|0}^{fT} + \varepsilon_{24|-6}^{fT} \right) \mathbf{M} \left[ (\mathbf{x}_{0|0}^{a} - \mathbf{x}_{0}^{t}) - (\mathbf{x}_{0|-6}^{f} - \mathbf{x}_{0}^{t}) \right]$  $e_{30}\varepsilon_{24|-6}^{f}$  $e_{24}\varepsilon_{24|0}^{f}$ = $\left(\varepsilon_{24|0}^{fT} + \varepsilon_{24|-6}^{fT}\right)\mathbf{M}\left[\mathbf{x}_{0|0}^{a} - \mathbf{x}_{0|-6}^{f}\right]$ X<sub>b</sub>  $= \left( \varepsilon_{24|0}^{fT} + \varepsilon_{24|-6}^{fT} \right) \mathbf{M} \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} \left( \mathbf{H}_{i} \mathbf{P}_{i}^{f} \mathbf{H}_{i}^{T} + \mathbf{R} \right)^{-1} \left( \mathbf{y} - \mathbf{H}_{i} \mathbf{x}_{0|-6}^{f} \right)$ **00UTC** + 24h -6h  $= \left( \varepsilon_{24|0}^{fT} + \varepsilon_{24|-6}^{fT} \right) \mathbf{MKv}$  $= \left(2\varepsilon_{0|-6}^{fT}\mathbf{M}^{T} + \mathbf{v}^{T}\mathbf{K}^{T}\mathbf{M}^{T}\right)\mathbf{M}\mathbf{K}\mathbf{v}$  $(\mathbf{x}^b = \mathbf{x}^f_{0|-6}, \mathbf{x}^a = \mathbf{x}^f_{0|0} = \mathbf{x}^a_{0|0})$  $= 2\varepsilon_{0}^{fT}\mathbf{M}^{T}\mathbf{M}\mathbf{K}\mathbf{v} + \mathbf{v}^{T}\mathbf{K}^{T}\mathbf{M}^{T}\mathbf{M}\mathbf{K}\mathbf{v}$ 



Since  $\varepsilon_{0|-6}^{f}$  has the same value in the expressions for the 24 hr and 30 hr forecast errors, it follows that it is only variations in  $\mathbf{v} = \mathbf{y} - \mathbf{H}_i \mathbf{x}^f = \varepsilon^o - \mathbf{H}\varepsilon_{0|-6}^f$  through variations in  $\varepsilon^o$  that can influence the reduction in squared forecast error. Taking the derivative of J with respect to  $\mathbf{v}$  while holding  $\varepsilon_{0|-6}^f$  constant yields

$$\frac{\partial \mathbf{J}}{\partial \mathbf{v}}\Big|_{\varepsilon_{0+6}^{f}} = 2\left[\mathbf{K}^{T}\mathbf{M}^{T}\mathbf{M}\varepsilon_{0|-6}^{f} + \mathbf{K}^{T}\mathbf{M}^{T}\mathbf{M}\mathbf{K}\mathbf{v}\right] = 2\left[\mathbf{K}^{T}\mathbf{M}^{T}\varepsilon_{24|-6}^{f} + \mathbf{K}^{T}\mathbf{M}^{T}\mathbf{M}\mathbf{K}\mathbf{v}\right]$$

Since the variation  $\delta e_{30}$  due to a change  $\delta \mathbf{x}_{0|-6}^{f}$  in  $\mathbf{x}_{0|-6}^{f}$  is given by

$$\delta e_{30} = \delta \mathbf{x}_{0|-6}^{fT} \mathbf{M}^T \mathbf{M} \delta \mathbf{x}_{0|-6}^f, \text{ it follows that } \frac{\partial e_{30}}{\partial \mathbf{x}_{0|-6}^f} = 2\mathbf{M}^T \varepsilon_{24|-6}^f, \text{ when } \mathbf{M} \delta \mathbf{x}_{0|-6}^f = \varepsilon_{24|-6}^f$$

Similarly, since the variation  $\delta e_{24}$  due to a change  $\delta \mathbf{x}_{0|0}^a$  in  $\mathbf{x}_{0|0}^a$  is given by

$$e_{24} = \delta \mathbf{x}_{0|0}^{aT} \mathbf{M} \delta \mathbf{x}_{0|0}^{a}$$
, it follows that  $\frac{\partial e_{24}}{\partial \mathbf{x}_{0|0}^{a}} = 2\mathbf{M}^{T} \mathbf{M} \mathbf{K} \mathbf{v}$  when  $\delta \mathbf{x}_{0|0}^{a} = \mathbf{K} \mathbf{v}$ .

Thus, Langland and Baker (Tellus, 2004) find  $\frac{\partial \mathbf{J}}{\partial \mathbf{v}}\Big|_{\mathcal{E}_{0,6}^{f}} = \mathbf{K}^{T} \left| \frac{\partial e_{30}}{\partial \mathbf{x}_{0|-6}^{f}} + \frac{\partial e_{24}}{\partial \mathbf{x}_{0|0}^{a}} \right|$ 



The adjoint based ob impact is a good predictor of the true impact



### NAVDAS ADJOINT Total Impact by Satellite Channel



#### Assessment of AQUA sensors AMSU/A, AIRS longwave 14-13µm, AIRS shortwave 4.474µm, AIRS shortwave 4.180µm

• AIRS has 2378 spectral channels!

AQUA sensitivity specified by channel number: Aug 15-26, 2006



• NRL pioneered methodology for quantifying reduction in forecast error for each individual satellite channel

• JCSDA partners will use methodology to optimally select satellite observations for maximum NWP impact.

• Comparison of observation impact results between JSDCA partners will help identify problems with observing systems and assimilation systems.

Funded in part by JCSDA



#### **NAVDAS ADJOINT** Total Impact by Observation Type







# **ECO-RAP**

# A new adaptive error covariance localization tool for 4-dimensional ensemble data assimilation

# Craig H. Bishop, Daniel Hodyss, William. F. Campbell, and Justin G. Mclay

Naval Research Laboratory, Monterey, California







- Motivation
- How ECO-RAP works
- Idealized tests
- Review
- Computational considerations/speed-up
- Preliminary experiment with NWP model
- Conclusions







Ensembles give flow dependent, but noisy correlations







#### Today's fixed localization functions limit adaptivity











- Ensemble correlations contain propagation and length scale information.
- Ensemble correlations corresponding to large true correlations are bigger than those corresponding to true zero correlations. (Variance of spurious is 1/K).
- Raising ensemble correlations to a power attenuates small values more than large values.
- Sandwiching *non-adaptive* localization matrix between ensemble correlation matrices raised to a power yields *adaptive* localization matrix.



# Length Scale Variability Experiment





#### Tune for short error length scales then test on broad

# Length Scale Variability Experiment









- 32 variables in periodic domain
- •Truth moves to the right one grid point per time step
- One ob. per time step at variable 16 (very small ob error variance)
- •After 32 time steps use all 32 collocated observations to estimate the initial state









- No localization produces an inaccurate estimate everywhere
- Non-adaptive localization can only use observations close to the analysis time
- ECO-RAP recovers the true state





- 1) Are the variables whose forecast errors correlate with another variable confined to the geographic neighbourhood of that variable?
- 2) What is "local" about forecast errors due to a misspecification of the albedo of stratus clouds?
- 3) What is "local" about errors associated with a sudden stratospheric warming event?
- 4) ECO-RAP can moderate spurious correlations even when the answer to (1) is "No".



### **Localization or Moderation?**







Review



- ECO-RAP is a new flow-adaptive localization method for ensemble DA.
- It raises ensemble correlations to powers (Hadamard products) to selectively reduce spurious correlations.
- Broad localization functions are obtained by sandwiching non-adaptive localization matrices between correlation matrices raised to a power.
- ECO-RAP adapts to changes in the propagation and scale characteristics of errors.
- ECO-RAP is as good as non-adaptive localization when error distribution is invariant.





- *N*=number of model variables
- $\mathbf{C}_{\text{ECO-RAP}} = \overline{\mathbf{C}_{K}^{\circ n} \tilde{\mathbf{E}} \tilde{\boldsymbol{\Lambda}} \tilde{\mathbf{E}}^{T} \mathbf{C}_{K}^{\circ n}}$  has  $N^{2}$  elements
- So does the Covariances Adaptively Localized with ECO-rap (CALECO) matrix

$$\mathbf{P}_{CALECO}^{f} = \mathbf{P}_{K}^{f} \circ \left[ \overline{\mathbf{C}_{K}^{\circ n} \tilde{\mathbf{E}} \tilde{\boldsymbol{\Lambda}} \tilde{\mathbf{E}}^{T} \mathbf{C}_{K}^{\circ n}} \right]$$





- Local Ensemble Transform Kalman Filter (LETKF) [Hunt et al (2007; Physica D)]
  - Each grid point is updated only with the observations lying within grid point's observation volume.
  - Each grid point can be updated independently so algorithm is scalable.
  - Finite observation volume is needed to limit the effect of spurious long-distance correlations.
  - Problematic for observations of vertical integrals of model variables such as satellite obs.
  - Problematic for 4D assimilation when errors propagate further than the localization width over the time window of interest.
  - Redundancy in observation processing since there is a high degree of overlap between volumes.



#### Turbulence inspired recipe for huge 'turbulence' ensemble





If covariance of turbulence ensemble was CALECO then computer memory would only need to store "energy containing eddies". Is there a turbulence ensemble whose covariance is CALECO? **Turbulence ensemble for CALECO** 



It may be shown that if

$$\mathbf{A} = \mathbf{U}\mathbf{U}^T$$
 and  $\mathbf{B} = \mathbf{V}\mathbf{V}^T$  then  $\mathbf{A} \circ \mathbf{B} = [\mathbf{U} \otimes \mathbf{V}][\mathbf{U} \otimes \mathbf{V}]^T$ ,

where  $U \otimes V$  indicates the matrix whose columns list all possible non-linear products of the columns of U and V.

Consequently, covariance of turbulence ensemble one obtains by taking all possible non-linear products of "energy containing eddies" U and V is the element-wise product of the covariances of U and V. Hence, since

$$\mathbf{P}_{K}^{f} = \mathbf{Z}_{K} \mathbf{Z}_{K}^{T} \text{ and } \mathbf{C}_{\text{ECO-RAP}} = \overline{\mathbf{C}_{K}^{\circ n} \mathbf{\tilde{E}} \tilde{\boldsymbol{\Lambda}} \mathbf{\tilde{E}}^{T} \mathbf{C}_{K}^{\circ n}} = \left[ \overline{\mathbf{C}_{K}^{\circ n} \mathbf{\tilde{E}} \tilde{\boldsymbol{\Lambda}}^{1/2}} \right] \left[ \overline{\mathbf{C}_{K}^{\circ n} \mathbf{\tilde{E}} \tilde{\boldsymbol{\Lambda}}^{1/2}} \right]^{T}$$

It follows that the energy containing eddies for the turbulence ensemble whose covariance is CALECO are

$$\mathbf{Z}_{K}$$
 and  $\left[\overline{\mathbf{C}_{K}^{\circ n}\tilde{\mathbf{E}}\tilde{\Lambda}^{1/2}}\right]$   
Since columns of  $\left[\overline{\mathbf{C}_{K}^{\circ n}\tilde{\mathbf{E}}\tilde{\Lambda}^{1/2}}\right]$  are in spectral space, for broad localization functions can truncate leaving  $\left[\overline{\mathbf{C}_{K}^{\circ n}\tilde{\mathbf{E}}\tilde{\Lambda}^{1/2}}\right]$  only has *L* columns (*L* < *N*).





- When CALECO is used in LETKF size of observation volumes is unconstrained because localization is implicit in CALECO.
- Larger observation volumes are appropriate for satellite DA and 4D-DA
- Larger observation volumes enable entire grid columns (or indeed the entire globe) to be updated simultaneously and hence avoids redundancy in observation processing.
- Note that ensemble size is now given by the size of the turbulence ensemble.
- The size of the turbulence ensemble is an upper bound on the dimension of the error and is usually < number of obs.

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_2.jpeg)

- ECO-RAP can provide multi-variate "localization".
- However, in this experiment, to further increase the computational efficiency of ECO-RAP, we chose a single variable  $\theta_e$  to localize *u*,*v*,*T*
- Future work will consider fully multivariate ECO-RAP together with alternative univariate formulations (e.g. using φ)

![](_page_37_Picture_0.jpeg)

### v Increment From a Single T Ob.

![](_page_37_Picture_2.jpeg)

![](_page_37_Figure_3.jpeg)

Example ECO-RAP Localization Functions

3 Z

![](_page_38_Figure_2.jpeg)

9 Z

![](_page_38_Figure_5.jpeg)

3 Z

![](_page_38_Figure_7.jpeg)

6 Z

10

15

20

25

30 120

125

130

135

0.8

0.6

0.4

0.2

9 Z

![](_page_38_Figure_10.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_2.jpeg)

- K = 27 member ensemble, T119L30 NWP model (NOGAPS).
- 7x7x30 grid box size .
- 3° grid resolution.
- We observe *u*,*v*,*T* at every point within the box at 3Z and 9Z, and attempt to estimate the state at 6Z.
- 'Truth' is assumed to be a 21-27 hour forecast.
- First guess/ensemble come from last 6 hrs of 9 hr forecast valid at the same time.
- Observations are the 'truth' plus random number
- Observation error variance is  $1 \text{ m}^2/\text{s}^2$  and  $1 \text{ K}^2$
- Number of obs = 8820, Number of variables=13230
- K\_Turbulence=1640
- Smoothed ensemble perturbations before applying ECO-RAP
- Correlations were raised to the 12<sup>th</sup> power

![](_page_40_Picture_0.jpeg)

# **Globally Averaged Results**

![](_page_40_Picture_2.jpeg)

![](_page_40_Figure_3.jpeg)

![](_page_41_Picture_0.jpeg)

# Summary

![](_page_41_Picture_2.jpeg)

- Ensemble localization is equivalent to running ensemble through a 1-step turbulent cascade where energy containing eddies are the raw ensemble and the columns of the square root of the localization covariance matrix.
- Turbulence analogy, separability, and spectral truncation enable computationally efficient DA algorithm cost governed by error dimension.
- ECO-RAP allows larger observation volumes in LETKF outperforms raw ensemble.