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NESDIS SSM/I Climate Data Records 
Started Since 1987
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Global Forecast Score Improvements 
CDAS/Reanl vs GFS NH/SH 500 hPa Day 5 

Anomaly Correlation (20-80 N/S) 
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Our Vision

• Definition of scientific and operational 
requirements for new instruments 

• Observation system simulation experiments 
• Instruments calibration
• Algorithm developments and data analysis 
• Forward model development
• Quality assurance and product validation
• Data assimilation and numerical modeling 

testing
• Analysis of impacts on forecast applications 
• Implementation and delivery of improved 

forecasts and products to user communities 
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In 2015, Nation’s monitoring and 
predictions of severe storms will be 
empowered by uses of advanced 
instrument data from geostationary and 
polar-orbiting satellites  

ORA’s Role in Satellite Program Developments 
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Microwave Absorption Spectrum 

Janssen M. A., 1993:  Atmospheric remote sensing by microwave 
radiometry,  Chapter 2, John Wiley &Son inc 

1. Rotational transition line: O3,H2O,CO,ClO, N2O…
2. Spin-rotational transition: O2  and zeeman splitting in

upper atmosphere  where geomagnetic field is important
3. Doppler and pressure broading
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Microwave Penetration Depth
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Instrument Spectrum Allocations
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MW Stratosphere and Mesosphere 
Sounding
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Millimeter Wavelength Spectroscopy 
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Evolution of Passive Microwave 
Sensors



12

Microwave Products Developed for 
Weather and Climate Studies 

SDR/ED
R

POES
AMSU-A/B

MHS

DMSP
SSMIS

NPOESS
CMIS
ATMS

Precip rate*

Surface  
temp*

Land emis*

Snow cover*

Geo-STAR DMSP
SSM/I

Radiances 

Sea ice *

Ice water*

Temp. 
profile

Moist. 
Profile

Hydr. profile

Cloud water*

Surface wind 

Soil moisture
*  Currently produced through NOAA Advanced Microwave Sounding Unit (AMSU/MHS).  Many of 
EDRS were not planned when the sensor  was developed. 
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Microwave Radiometry System

Local Oscillator

Mixer IF Amplifier Filter Detector DC Amplifier

LO

RF IF

VFeed

Reflector
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Microwave Radiometry Calibration 
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Calibration including non-Linearity Effect 
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Other Factors Affecting Microwave 
Calibration

• Main-reflector conically scans the earth 
scene

• Sub-reflector views cold space to provide 
one of two-point calibration 
measurements  

• Warm loads are directly viewed by 
feedhorn to provide other measurements 
in two-point calibration system 

• Warm load calibration may be 
contaminated 

• Occasional lunar contamination on space 
view 
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Microwave Measurement Data Records



18

Microwave Surface Emissivity Spectra

Surface Emissivity Spectra at a Viewing Angle  of 53 Degree
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Advanced Microwave Sounding Unit
Imaging and Temperature Sounding Channels

23.8 GHz 31.4 GHz

52.8 GHz 53.7 GHz
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Advanced Microwave Sounding Unit
Imaging and Moisture Sounding Channels

89 GHz

150 GHz

183±3 GHz

183± 1 GHz
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Microwave Remote Sensing of Clouds

• A large contrast exists between 
cloudy and “clear” conditions, 
thanks to low ocean emissivity.

• Brightness temp increases 
exponentially with liquid water, 
thus requiring a logarithmic 
function for linearization

• “The linear regime” is dependent 
on frequency.  We can meet more 
customer’s needs (e.g. rain 
water..) if the measurements at 
each frequency are optimally  
utilized in the retrievals    
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Emission Approach 
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Emission-Based RT Model (1/3)
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Emission-Based RT Model (2/3)
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Emission-Based RT Model (3/3)
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Liquid Water Absorption 
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Scattering Approach: 2 Streams 
Approximation 
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Two-Stream Model Solution
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Algorithms of Cloud (Rain) Liquid 
Water Path: Vertically Integrated 

Liquid Water over Unit Area
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Cloud Liquid Water Algorithm 

Sometime, satellite measurements under
clear condition can be used to derive some
coefficients. From Eq. 6.13, set L=0
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Cloud Liquid Water Algorithm Evolution 
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SSM/I Cloud Liquid Water Algorithm: 
Operational at FNMOC and NESDIS

Pros:  
•Semi-Physical with easy understanding
•Large dynamic range (rain and non-rain)
•Clean background due to uses of real 
measurements
•Validated with ASTEX data for non-raining clouds

Cons:  
•Difficult to accommodate information from 
new channels and ancillary data
•Cloud layer temp is  implicit 
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NOAA POES AMSU

• AMSU are  on board NOAA POES since 1998
• There are 20 channels divided into three sub-modules:

A1 – 13 channels located near the 60 GHZ oxygen absorption band 
A2 – 2 window channels at 23.8 and 31.4 GHz
B – 2 high frequency channels at 89 and 150 GHz, and 3 channels near 183 GHz 

water vapor absorption line
• The field-of-view size varies as the instruments scan crossing track  
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AMSU Weighting Functions
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NOAA-16 AMSU-A Radiance Asymmetry 
(Channel 1,2,3,15)

,

∆T = A0 exp{ -0.5[(θ - A1) /A2]2 } + A3  + A4 θ + A5 θ2
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NOAA-15 AMSU-A Radiance Asymmetry 
(Channel 1,2,3,15)

,

∆T = A0 exp{ -0.5[(θ - A1) /A2]2 } + A3  + A4 θ + A5 θ2
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AMSU Cloud Liquid Water Algorithm: 
Operational at NESDIS

• Algorithms are needed for 
correcting instrument 
asymmetry before the 
measurements are used in 
retrievals

• A physical retrieval was 
developed for cloud liquid 
water and total precipitable
water 

• Include cloud layer 
temperature effects and 
surface emissivity which is 
linked to surface 
temperature and sea wind 
speed

Cloud Absorption vs. Temp
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AMSU Cloud Liquid Water

Before Asymmetry Correction After Asymmetry CorrectionNOAA-15

NOAA-16
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Aqua AMSR-E Products

• Ocean products : 
RWP,CWP,SST,SSW,CIWP,TWP,
Rain rate, Sea ice concentration

• Land products: LST, Soil 
moisture,Rain rate,Snow cover, Snow/Ice 
Types, Snow equivalent water 

Parameters SMMR
(Nimbus-7)

SSM/I 
(DMSP-

F08,F10,F11,F13,F15)

AMSR 
(Aqua, ADEOS-II)

Time Period 1978 to 1987 1987 to Present Beginning 2001

Frequency (GHz) 6.6, 10.7, 18, 21, 37 19.3, 22.3, 36.5, 85.5 6.9, 10.7, 18.7, 23.8, 36.5, 
89.0

Sample Footprint Sizes 
(km)

148 x 95 (6.6 GHz)
27 x 18 (37 GHz)

37 x 28 (37 GHz)
15 x 13 (85.5 GHz)

74 x 43 (6.9 GHz)
14 x 8 (36.5 GHz)
6 x 4 (89.0 GHz)
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AMSR-E LWP&RWP Algorithms

23.8, 37 V-pol for LWP and WVP,
23.8, 18 V-pol for RWP 

The same physical retrieval 
with modification for 
AMSR-E channels 

LWP = a0 [ln(Ts-TV37)- a1 ln(Ts-TV23)-a2]
WVP = b0 [ln(Ts-TV37)- b1 ln(Ts-TV23)-b2]
RWP = c0 [ln(Ts-TV18)- c1 ln(Ts-TV23)-c2]

LWP 

RWP 
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Algorithms of Cloud Ice Water Path: 
Vertically Integrated Ice Water over 

Unit Area
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Definitions of Cloud Ice Water Path
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ER-2 MIR, DC-8 ARMAR, MODIS 
Simulator Measurements  

Weng and Grody (2000, JAS)

Three millimeter wavelength channels provide the overal
needed sensitivity for cloud ice microphysics which can 
be uniquely used for precipitation mapping
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MIR Window & Sounding 
Channel Observations
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Sensitivity of Sub-mm to Ice Cloud 
Parameters
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Flowchart of Cloud Ice Algorithm
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Flowchart of Cloud Ice Algorithm
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CIWP Error Budget
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The errors of CIWP are 
mainly due to

(1) uncertainty in the 
effective particle 
diameters

(2) uncertainty in the 
particle bulk volume 
density 
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Cloud Ice Water Path 

• Brightness temperatures from AMSU-B 89 and 150 GHz are two  primary channels for IWP and De

• Retrieval algorithm was published in Journal of Atmos Sci (Weng and Gody, 2000) and J. Appli. 
Meteor (Zhao and Weng, 2002)

• AMSU-A window channels are used for surface screening.  
• The algorithm works for opaque ice clouds having IWP greater than 0.05 kg/m2
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Algorithms for Atmospheric Temperature 
(T) and Water Vapor Sounding (Mixing 

Ratio) 



55

Microwave Sounding Principle 
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Regression Algorithm
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One Dimensional Variational Retrieval 
(1dvar) (1 of 3)
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One Dimensional Variational Retrieval 
(1dvar) (2 of 3)
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One Dimensional Variational Retrieval 
(1dvar) (3 of 3)
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MIRS Concept 

Algorithm valid in all-weather conditions, over all-surface types

Variational Assimilation 
Retrieval (1DVAR)

Cloud & Precip profiles retrieval (no cloud top, 
thickness, etc)

Emissivity spectrum 
is part of the 

retrieved state vector

CRTM as forward 
operator, validity-> 

clear, cloudy and precip
conditions

Sensor-independent

EOF 
decomposition

Highly Modular 
Design

Flexibility and Robustness

Modeling & Instrumental 
Errors are input to algorithm Selection of Channels to 

use, parameters to retrieve
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System Design & Architecture
Raw Measurements

Level 1B Tbs

Radiance 
Processing 

EDRs

External Data
& Tools

Inversion Process

Radiometric Bias
Ready-To-Invert

Radiances

RTM Uncert. Matrx
F

NEDT Matrx
E

NWP Ext. Data

Comparison

Geophysical Bias

In-Situ Data
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MIRS Products Performance Monitoring

• Cross-Sensor Intercomparison
– Comparison of advanced products from AMSU/MHS and 

SSMI/S (TPW images below)

Note: wider AMSU swath than SSMI/S
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Microwave TPW Extended over Land
snow-covered surfaces 

need better handling

MIRS Retrieval

GDAS Analysis

Retrieval over sea-ice and 
most land areas 

capturing same features as GDAS



64

Validation of TPW Retrieval over Land

• ~4000 NCDC IGRA points 
collocated with NOAA-18 
radiances

• Only convergent points over 
land used

• Only points within 0.5 degrees 
and within 1hour

• Cloudy points included up to

Bias: -1.13 mm

Std Dev: 4.09 mm

Corr. Factor: 0.86

#Points: 4293

MIRS-based TPW Performances over Land
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Global Temperature Profiling  
No Scan-Dependence in retrieval
Smooth Transition Land/Ocean

Similar Features Captured

QC-failure is based on convergence: 
Focus of on-going work
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Global Humidity Profiling 

No Scan-dependence noticed:
Angle dependence properly 

accounted for
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Match-up TPW from radiosondes

and AMSU retrieval in 2002. 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

TPW (mm, radiosonde)

TP
W

 (m
m

, 1
dv

ar
)

N=585, NOAA-15
bias=0.28 mm, rms=2.70 mm

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

TPW (mm, radiosonde)

TP
W

 (m
m

, 1
dv

ar
)

N=618, NOAA-16
bias=0.12 mm, rms=2.28 mm

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

TPW (mm, radiosonde)

TP
W

 (m
m

, 1
dv

ar
)

bias=0.07 mm, rms=2.52 mm

80
N=679, NOAA-17

Vertically Integrated Water Vapor



68

Hurricane Bonnie  Warm Core from 
AMSU
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Hurricane Isabel 
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Intercomparison between MODIS and AMSR-E 
LWP for Stratus Clouds
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Validation of General Circulation Model
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Validation of Numerical Weather 
Prediction Models 
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GFS Prognostic Scheme vs. AMSU 
Cloud Water 

Satellite 
Retrievals 

Eta model 
(raining&non-
raining) 

Eta model (non-
raining) 

GFS model (non-
raining) 

It is obvious that global/regional models have “ice happy” physics
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Climate Monitoring from NOAA Operational 
AMSU Product 
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Concluding Remarks

NESDIS is offering a center of expertise, from 
research to operation, on microwave remote 
sensing. We are closely linked to customers in 
understanding their needs and we are also 
collaborating with universities in various research 
frontiers
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Homework 
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