Operational Satellite Program Overview

Mitch Goldberg, Chief Satellite Meteorology and Climatology Division NESDIS/Center for Satellite Applications and Research (STAR)

Data Assimilation Class August 6, 2007

NOAA's Operational Environmental Satellites

NOAA provides an *OPERATIONAL* remote sensing capability for acquiring and disseminating *GLOBAL* and regional imagery and measurements of the environment, including *METEOROLOGICAL, CLIMATIC, OCEANOGRAPHIC, SOLAR-GEOPHYSICAL, and HAZARDS* data, in support of the NOAA mission and the benefit of the Nation.

NOAA Satellite Observations and Products are used for:

- Weather analysis, warnings and prediction
- Climate monitoring and prediction
- Environmental hazards monitoring
- Oceanic monitoring and prediction
- Vegetation, agricultural, and hydrological applications
- Atmospheric, oceanic, and climate research

NOAA's Satellites

Two polar (POES) and two geostationary (GOES) environmental satellites

Space-Based component of the Global Observing System (GOS)

Research Support for Satellite Earth Observations

STAR always looks for improvements in our process

Satellite Program

- Provides continuity of essential observations (variables)
- Research missions provide new technological capabilities for observing essential variables with better performance
- Operational missions provide continuity of essential variables based on proven technology

Topics

- Satellite fly-out charts
 - Polar orbiting satellites
 - Geostationary
- Map key variables to sensors
- Highlight near term opportunities
- GOES-R
- Summarize

Planned Missions -Polar

NOAA Planned M issions -Geostationary 2008 2009 2012 2004 | 2005 2006 2007 2010 2011 2013 2014 2015 2016 2017 2018 2019 2020 GOES 10 Backup GOES 11 GOES West **GOES** East GOES 12 GOES 13 On-orbit Spare GOES O GOES P GOES R GOES S Satellite is operational Б

Operational

beyond design life

Mapping Variables to Sensors -Atmosphere

Temperature	HIRS/AMSU A&B >>AIRS/AMSU/HSB >>IASI/AMSU/MHS >>CriS/ATMSSSMT/2 >>SSMIS,COSMICGRASAdvanced GEO Sounder		
Moisture	HIRS/AMSU A&B >> AIRS/AMSU/HSB >> IASI/AMSU/MHS >> CriS/ATMS SSMT/2 >> SSMIS Advanced GEO Sounder		
Ozone	SBUV/2 >> OMI>> <u>GOME-2</u> >> OMPS AIRS >> IASI >> CrIS		
Aerosols	AVHRR >> MODIS >> Calypso (Lidar) >> GOME-2>>VIIRS >> APS??		
Clouds	AVHRR >> MODIS >> VIIRS AIRS >> IASI >> CrIS GOES-R ABI CloudSat (Radar)		
Precipitation	SSMI >> SSMIS >> AMSR > MIS TRMM >> GPM		
Wind Speed	GEO AMV, MODIS Polar Winds >> ADM??? GOES-R ABI, GEO Adv. Sounder		
Trace Gases	AIRS, IASI, GOME-2, OCO GEO Adv Sounder		

Mapping Variables to Sensors - Land

Sfc emissivity database	AIRS, IASI, CrIS AMSR-E		
Vegetation Greenness Fraction; Leaf Area Index	AVHRR >> MODIS >> VIIRS GOES-R ABI		
Snow/Ice	AMSU ,SSMI >> SSMIS >> MIS AVHRR, GOES Imager >> VIIRS >> GOES-R ABI		
Land Surface Temperature	AVHRR >> MODIS >> VIIRS GOES Imager >> GOES-R ABI AMSR-E		
Soil Moisture	AMSR-E, SMOS		

Mapping Variables to Sensors -Ocean

SST	AVHRR >> MODIS >> VIIRS WindSAT >>AMSR-E >> MIS?		
SSH	JASON (need continuity mission)		
SSW	Quikscat, Windsat, ASCAT		
Salinity	SMOS (need to evaluate)		
Sea Ice	SSMI, WindSAT, SSMIS, AMSR-E,		
Ocean Color	SeaWifs >> MODIS >> VIIRS??		

Near Term Opportunities

- SSMI/S, AIRS, IASI -- improve the model temperature analysis in the upper atmosphere
- SSMI/S -- Improving hurricane forecasts
- IASI improve temperature and moisture soundings
- GOME-2 air quality measurements
- ASCAT ocean surface winds & more
- COSMIC/GRAS radio occultation

SSMI/S extends profiling capability well into mesosphere.

Opportunity to address model bias in upper stratosphere

Calculated AIRS minus Observed AIRS show large model bias in upper stratosphere

-9.5-8.6-7.8-6.7-5.7-4.8-3.6-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.8 9.5

Limb Adjusted BT, 7 PCs - GDAS (NAD), 667.775cm-1, Sep. 2004

Ascending: bias=-3.56201 rms=4.06716 count=64339 min=-7.96894 max=7.25009

Descending: bias=-3.51311 rms=3.96571 count=64366 min=-7.76561 max=6.00906

-9.5-8.6-7.8-6.7-5.7-4.8-3.6-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.8 9.5

Large Bias in Model Fields @ 1mb when compared to AIRS

²⁵ mb

Hurricane Katrina from SSMIS Sounding Channel (54 GHz)

• The Defense Meteorological Satellite Program (DMSP) successfully launched the first of five Special Sensor Microwave Imager/Sounder (SSMIS) on 18 October 2003.

٠

- The SSMIS measures partially polarized radiances in 24 channels covering a wide range of frequencies (19 – 183 GHz)
 - conical scan geometry at an earth incidence angle of 53 degrees
 - maintains uniform spatial resolution, polarization purity and common fields of view for all channels across the entire swath of 1700 km.

-80

-80

-80

Liu and Weng, GRL, 2006

Impacts of SSMIS LAS on Hurricane Temperature Analysis Control Test

Liu and Weng, GRL, 2007

Katrina Warm Core Evolution

NESDIS is now receiving IASI data in real time

Comparison of AIRS and IASI (IASI instrument developed by CNES)

Spectral Coverage of AIRS, IASI, and CrIS

AIRS is providing significant improvements in temperature and moisture soundings over ATOVS in partially cloudy environments

Time series of low-level vertical moisture structure during 9 hours prior to Oklahoma/Kansas tornadoes on 3 May 1999

GIFTS traces moisture peaks and gradients with greatly reduced errors

Applications of Mapped Spectrally Resolved Radiances

- Compare radiances with simulated radiances from model analyses
- Compare different years to see how the outgoing infrared radiances have changed.

Very good agreement of analysis temperatures with AIRS

Limb Adjusted BT, 7 PCs - ECMWF (NAD), 681.457cm-1, Clear Sky, Sep, 2004

-9.5-8.6-7.8-6.7-5.7-4.8-3.8-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.8 9.5

ECMWF and NCEP are nearly identical for temperature

Observed AIRS minus ECMWF Simulated AIRS for Upper Trop. Water Vapor

Limb Adjusted BT, 7 PCs - ECMWF (NAD), 1519.07cm-1, Clear Sky, Sep, 2003

Descending: bias=0.801072 rms=1.75827 count=27014 min=-11.885 max=22.4717

-9.5-8.5-7.8-6.7-5.7-4.8-3.8-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.6 9.5

Limb Adjusted BT, 7 PCs - ECMMF (NAD), 1519.87cm-1, Clear Sky, Sep, 200

Descending: bias=0.737456 rms=1.52481 count=33592 min=-12.8482 max=16.5283

-9.5-8.8-7.8-6.7-5.7-4.8-3.8-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.8 9.5

270 mb

2004

2003

AIRS assimilated operationally

Limb Adjusted BT, 7 PCs - ECMWF (NAD), 1519.07cm-1, Clear Sky, Sep, 2005

Descending: bias=0.812873 rms=1.56543 count=32235 min=-10.2056 max=19.5798

RR—7R—87—57—4R—38—30—10—A0AA A0 10 30 38 48 57 87 78 88

2005

Observed AIRS minus NCEP Simulated AIRS for Upper Trop. Water Vapor

Limb Adjusted BT, 7 PCs - GDAS (NAD), 1519.07cm-1, Clear Sky, Sep. 2

30\$

605

305

605

AIRS assimilated operationally

6ÔE

6ĊE

12DE

120E

-9.5-8.6-7.6-6.7-5.7-4.8-3.6-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.6 9.5

Limb Adjusted BT, 7 PCs - ECMWF (NAD), 1598.49cm-1, Clear Sky, Sep, 2004

Ascending: bias=-0.00965988 rms=1.12849 count=35245 min=-10.0071 max=16.4171

Descending: bias=0.0265201 rms=1.18533 count=33592 min=-11.5689 max=13.0889

-9.5-8.5-7.8-6.7-5.7-4.8-3.8-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.6 9.5

Limb Adjusted BT, 7 PCs - ECMWF (NAD), 1598.49cm-1, Clear Sky, Sep, 2005

-9.5-8.8-7.8-6.7-5.7-4.8-3.8-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.8 9.5

-9.5-8.8-7.8-6.7-5.7-4.8-3.8-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.8 9.5

Limb Adjusted BT, 7 PCs - GDAS (NAD), 1598.49cm-1, Clear Sky, Sep, 2004

Ascending: bias=0.89881 rms=1.57801 count=35173 min=-8.46484 max=16.6099

Descending: bias=0.871343 rms=1.60259 count=33494 min=-13.4903 max=15.8993

-9.5-8.6-7.8-6.7-5.7-4.8-3.8-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.8 9.5

Descending: bias=0.954703 rms=1.87708 count=25254 min=-11.1691 max=16.7782

-9.5-8.6-7.8-6.7-5.7-4.8-3.8-2.9-1.9-0.9 0.0 0.9 1.9 2.9 3.8 4.8 5.7 6.7 7.6 8.8 9.5

BT Monthly different, 1519.07cm-1, Clear Sky, 7 PCs, Sep2005-Sep2004

BT Monthly different, 1519.07cm-1, Clear Sky, 7 PCs, Sep2005-Sep2004

What have we learned?

- AIRS instrument is extremely stable and accurate
- Only 5% of the globe is clear at a 14 km fov
- AIRS has resulted in positive impacts in NWP, however only clear channels are assimilated and larger impacts are still expected.

1000

-1

-0.5

0.5

1.5

2

2.5

- Cloud-clearing radiances increases yield to about 50%
- Retrievals from cloud-cleared radiances are significantly more accurate than AMSU-only.
- Demonstrated 1 K/Km precision

Cloud clearing significant¹ improves data coverage

735.69 cm-1 (peak ~ 700 mb) ALL diff < +- 0.5 K

Cloud-cleared minus clear simulated brightness temperatures

-0.4 - 0.3 - 0.2 - 0.1 0 0 1 0.2 0.3 0.4

700 MB – Lower to Mid Troposphere

Observed minus clear simulated brightness temperatures

Trace Gas Product Potential from Operational Thermal Sounders

	Interference	Precision (Goal)	Range (cm ⁻¹)	gas
Working	H2O,emissivity	10%	1025-1050	O ₃
	H2O,N2O	15%	2080-2200	СО
	H2O,HNO3	20 ppb	1250-1370	CH ₄
	H2O,O3	2 ppm	680-795	CO ₂
		2 ppm	2375-2395	
In Work	H2O,HNO3	500%	1340-1380	SO ₂
	emissivity	40%	860-920	HNO ₃
	H2O,CH4	25%	1320-1330	
	H2O	10%	1250-1315	N ₂ O
	H2O,CO	10%	2180-2250	
Held Fixed	emissivity	20%	830-860	CFCl ₃ (F11)
	emissivity	20%	900-940	$CF_2Cl (F12)$
	emissivity	50%	790-805	CCl ₄
Improved Utilization of Satellite Observations

Greenhouse Gas Inventories: Monthly mean observations from AIRS help decision makers understand carbon sources and supports 2005 US Energy Bill

29 month time-series of AIRS products Alaska & Canada Zone ($60 \le lat \le 70, -165 \le lon \le -90$)

AIRS CO2 agrees well with aircraft measurements

Principal Component Analysis is used for

- •Data compression
- •Reconstructed radiances (noise filtered radiances)
- •Case-dependent (dynamic) noise estimation
- •Quality control
- •Regression retrieval

Principal Component Analysis

- Principal component analysis (PCA) is often used to reduce data vectors with many components to a different set of data vectors with much fewer components that still retains most of the variability and information of the original data
- **R** = $r_1 \cdot \mathbf{i}_1 + r_2 \cdot \mathbf{i}_2 + r_3 \cdot \mathbf{i}_3 + \dots + r_n \cdot \mathbf{i}_n$

where $\mathbf{i}_1 = (1,0,0,0,0,\dots,0_n)$; $\mathbf{i}_2 = (0,1,0,0,0,\dots,0_n)$

- Data are rotated onto a new set of axes, such that the first few axes have the most explained variance.
- $\mathbf{R} = p_1 \cdot \mathbf{E}_1 + p_2 \cdot \mathbf{E}_2 + p_3 \cdot \mathbf{E}_3 + \dots + p_n \cdot \mathbf{E}_n$ where \mathbf{E} are eigenvectors and $p_1 = \mathbf{R} \cdot \mathbf{E}_1$
- So instead of **R** vectors of length n, we can have a truncated **P** vectors of length m, where m << n

Generating AIRS eigenvectors

- Each AIRS data vector has 1688 radiance values.
- The radiances are normalized by expected instrumental noise (signal to noise)
- Compute the covariance matrix S
- Compute the eigenvectors E and eigenvalues Λ S = E Λ E^T
- E = matrix of orthonormal eigenvectors (1688x1688) $\Lambda = vector of eigenvalues (explained variance)$

Applying AIRS eigenvectors

- On independent data compute principal component scores.
- $P = E^T R$; elements of $R = (r_i r_i) / n_i$
- Invert equation and compute reconstructed radiances R* from truncated set.
- $R^* = EP$
- Reconstruction score = $[1/N (R_i^* R_i)^2]^{1/2}$

 $i = 1 \dots N$ channels

Square root of the eigenvalues

1	7497.60	19	14.68	37	3.38	55	1.25
2	1670.40	20	13.49	38	3.11	56	1.19
3	945.52	21	12.28	39	2.82	57	1.16
4	496.01	22	11.32	40	2.53	58	1.15
5	284.01	23	10.70	41	2.41	59	1.09
6	266.30	24	9.08	42	2.39	60	1.05
7	156.95	25	8.24	43	2.34	61	1.02
8	139.67	26	7.85	44	2.24	62	0.98
9	88.27	27	6.77	45	2.03	63	0.90
10	72.83	28	5.98	46	1.86	64	0.86
11	60.03	29	5.83	47	1.78	65	0.81
12	53.42	30	5.39	48	1.71	66	0.80
13	45.01	31	5.34	49	1.65	67	0.78
14	39.72	32	4.98	50	1.61	68	0.77
15	34.54	33	4.34	51	1.54	69	0.73
16	26.57	34	4.09	52	1.52	70	0.72
17	22.62	35	3.62	53	1.35	71	0.70
18	17.60	36	3.48	54	1.34	72	0.66

Data Compression

- 40 PCs for granule dependent EOFs
- 100 PCs for global independent EOFs
- The residuals are at noise levels and can be compressed and stored in a separate file for lossless compression
- Most people will not want the residuals.
- The picture to the left can be also used as a form of metadata to convince the user that the lossy compression is OK.
- Users can decide whether they want the residual file

Reconstructed error vs. the AIRS Instrument Noise

Instrument Noise, NE∆T at 250 K (Interferometers are apodized)

Eigenvector Analysis for Noise Reduction

- Eigenvector analysis allows correlated data to be represented by a relatively small set of functions.
- 8461 channels can easily be represented by a 100 unique coefficients couples with 100 static structure functions (100 x 8461)
- Benefits: Noise filtering and data compression. Distribute and archive 100 coefficients instead of 8461 channels (lossy compression) We can now use shortwave IR window channels for applications (LW vs SW cloud tests)

Opportunities to improve air quality monitoring and forecasting

- Congress mandates...
 - NOAA must develop and deploy air quality forecast model at NCEP which produces 24 hour ozone and particulate matter forecasts nationwide
- NOAA acts...
 - Memorandum of understanding signed between EPA and NOAA to develop and implement an accurate air quality forecast program which includes joint research initiatives
- NESDIS Role to Meet this Goal
 - Utilize satellite observations of aerosols, ozone and other trace gases to monitor air quality and improve air quality forecast by assimilation of satellite derived air quality products

Near Real Time Air Quality Products from MeTOP GOME-2 at NOAA/NESDIS

- OMI DOAS algorithms will be employed, tested, and implemented
- Products will be made available in NRT in 2008
- Products will be available at 40 X 40 km² spatial resolution

Product	User	Example Application
NO2 (425 – 450 nm)	EPA NWS	 Assessments Constrain NOx emissions in air quality forecast model Verification of precursor forecast fields
H2CO (337.5 – 359 nm)	EPA NWS	 Assessments Constrain isoprene emissions in air quality forecast model Verification of precursor forecast fields
Ozone (325 – 335 nm)	NWS	Ozone forecast improvements
Aerosol optical Depth (absorption vs scattering) (multiple bands in the UV)	EPA NWS NESDIS	 PM2.5 Monitoring PM2.5 and ozone forecast improvements Hazard Mapping System
Volcanic SO2 (315 – 326 nm)	NESDIS	Hazard Mapping System

Using Advanced Sensor Capabilities to Our Advantage: Applicability of OMI Aerosol Index Data in Improving Hazard Mapping System Smoke Analysis

 In the HMS, analysts use fire locations and visible imagery to draw smoke plumes. When plumes are removed from the source (fires), analysts have difficulty differentiating smoke from other aerosols

 NWS funded NESDIS/STAR to assess (QA/QC) the analyst drawn smoke plumes so they can be used in verifying HYSPLIT smoke forecasts

 GOES AODs (physical) retrieval rather than interpretation) are being used to evaluate the HMS analysis. However, GOES cannot differentiate between smoke and non-smoke aerosols either

 OMI Aerosol Index can identify smoke from urban/industrial haze but cannot differentiate between smoke and dust

OMI data courtesy of NASA

NO₂ from GOME-2 for March 12, 2007

• STAR GOME-2 NO₂ retrievals agree with EUMETSAT retrievals (top and middle panels).

2007/03/12 GOME2 NO2 DOAS NOAA/NESDIS/STAR

2007/03/12 GOME2 DLR DOAS NO2

ASCAT Scatterometer Measurements

© Dave Long, BYU, 2005

- Wind scatterometers for ocean wind
 - Direct measurement is surface backscatter
 - Geophysical model function relates wind and backscatter
 - Locating ocean storms, mesoscale winds
 - Other applications of backscatter measurements
 - Sea ice age, extent
 - Melt/thaw
 - Soil moisture
- ASCAT data has good daily coverage
 - Weather and sun independent observation capability

Oceanographic Application

8/99-7/03 4-year Average Wind Stress Curl

NCEP Wind Stress Curl

QuikSCAT In-Swath Wind Stress Curl

ERS Scatterometer Ice age

SoilW ater Index

GRAS Radio Occultation (RO) sounding

GRAS sounding distribution over 24 h

Occ. Event Distribution Data - Ground Projection Data

No.OccEv (VSet+ARise,GPS): 557 total, 273/ 284 set/rise. (no hiddenEv) UT Range: 010115.000000,0240000, H Levels: 0.0 10.0 2.0, 20.0 80.0 20.0 File/Id: /Metop_GRAS_sim/MAnPl/MAnPl_Metop_GRAS.GrProjD01

EGOPS[®] V3.0

MAnPl Geographic Maps Plot

Creation Date/Time: Apr 6 17:00:05 2001

GOES Constellation Today

Primary Requirement: Continuity of Capability

Two operational satellites and on-orbit spare

- GOES I-M (8-12)* series operational since 1994
 - GOES-10 operational at 60° W in support of South America beginning December 2, 2006
 - GOES-11 operational as GOES West beginning June 21, 2006
 - GOES-12 operational as GOES East beginning April 1, 2003
- GOES N-P
 - GOES-13 launched May 24, 2006, storage at 105° W
 - GOES-O in ground storage
 - GOES-P in factory testing phase
- GOES-R series will replace the GOES-N series no earlier than 2014

* Note: Satellites are labeled with letters on the ground and changed to numbers on-orbit

Today's Constellation GOES-13

- Bus: 8x9x3m
- Deployed length: 19m
- Weight: 7076 lbs

- Instruments similar to GOES 10 12, but hosted on a more advanced bus
 - Improved power subsystem permits operations during eclipse periods
 - Improved pointing accuracy and less thermal distortion
 - Repositioned boom allows colder detectors -- less instrument noise
- Simultaneous independent imaging & sounding allows frequent imaging
- Flexible scan control allows for improved short-term local weather forecasts

GOES-13: Less Thermal Distortion

GOES-R Baseline Instruments Provides Critical Products to the Nation

- Advanced Baseline Imager (ABI)
 - Monitors and tracks severe weather, winds, hurricanes, hazards, etc.
 - Images clouds to support forecasts
 - Aerosols for Air Quality & Climate Applications
 - Volcanic ash tracking, fire and smoke detection, winds and icing detection
- Hyperspectral Environmental Suite (HES)
 - Provides atmospheric moisture and temperature profiles to support environmental models, forecasts and climate monitoring
 - Monitors coastal regions for ecosystem health, water quality, coastal erosion, harmful algal blooms, sea surface temperature
 - Geostationary sampling of ocean color allows coastal resource management

• Geostationary Lightning Mapper (GLM)

- Detects lightning strikes as an indicator of severe storms
- Previous capability only existed on polar satellites

• Solar Imaging Suite (SIS) and Space Environmental In-Situ Suite (SEISS)

- Images the sun and measures solar output to monitor solar storms (SIS)
- Measures magnetic fields and charged particles (SEISS)
- Enables early warnings for satellite and power grid operations, telecom services, astronauts, and airlines

Auxiliary Services

- Environmental Data Relay
- Search and Rescue

ABI Improvements

5 Minute Coverage

GOES-I/P

1/5 Disc

Full Disc

Sounder Status

- Hyperspectral Environmental Suite was de-scoped from GOES-R this summer
- NOAA is evaluating how to meet continuity requirements for sounding products
- Final decision will be part of GOES-R Key Decision Point C/D planned for Summer 2007
- Office of Satellite Development currently working an Analysis of Alternatives for Advanced Sounder and Coastal Waters capability

ABI: Improved Resolution . .

Corresponding Simulated GOES Imager Spectral Bands:

Simulated "ABI" Spectral Bands:

...over a wider spectrum

Approximate spectral and spatial resolutions of US GOES Imagers

	~ Band Center (um)	GOES-6/7	GOES-8/11	GOES-12/N	GOES-O/P	GOES-R+
Visible	0.47					
	0.64					
Near-IR	0.86					
	1.6	Bo				
	1.38	Box size represents detector size				
	2.2					
Infrared	3.9					
	6.2		film and the			
	6.5/6.7/	14km	8	4		2
	7 ⁷ .3	"MSI mode"				
	8.5	······				
	9.7					
	10.35					
	11.2			X		
	12.3					
	13.3					

Lifted Index

- Computed from retrieved temperature and moisture profiles
 - Parcel lifted mechanically from 1000 mb mixed layer up to 500 mb
 - Pixel level retrievals
- Distributed to AWIPS
- <u>Operational Applications</u>
 <u>Nowcasting</u>
 - Convective potential
 - Convective morphology
 - Situational awareness in pre-convective environments for potential watch/warning scenarios

Level 2 Products from SEVIRI

Highlight: Composite Vegetation Index from SEVIRI – GOES-R Proxy Product

- Vegetation Index from MSG

 SEVIRI a proxy land
 surface product for GOES-R
- Image to the right is a composite from May 29-June 4
- Used ½ hourly images to eliminate clouds on a daily basis
- Composited daily images over 7 days, saving the highest NDVI
- This image shows the power of multiple looks per day in eliminating clouds from vegetation index maps.

Geostationary Lightning Mapper (GLM)

- Detects total strikes: in cloud, cloud to cloud, and cloud to ground
 - Compliments today's land based systems that only measures cloud to ground (about 15% of the total lightning)
- Increased coverage over oceans and lands
- Currently no ocean coverage, <u>and</u> limited land coverage in dead zones

Provide continuous

GLM Objectives:

Provide continuous, full-disk lightning measurements for storm warning and nowcasting.

Provide early warning of tornadic activity.

Summary

- Evolution of satellite instrumentation is providing new data assimilation opportunities to further improve forecasting and verification capabilities
- Challenge for JCSDA
 is to keep up.
- Satellite Capitalization Plan for post 2025

of instruments triple over 20 years: need to integrate rather than continue stovepipe processing and applications

RETRIEVAL VS. RADIANCE ASSIMILATION

RADIANCE ASSIMILATION =

$$V = V_{fest} + B_{fest}H^{T}(HB_{fest}H^{T} + O)^{-1}(R_{obs} - HV_{fest})$$

RETRIEVAL ASSIMILATION =

$$V = V_{\text{fcst}} + B_{\text{fcst}} (B_{\text{fcst}} + B_{\text{ret}})^{-1} (V_{\text{ret}} - V_{\text{fcst}})$$

$$V_{ret} = V_{clim} + B_{clim}H^{T}(HB_{clim}H^{T} + O)^{-1}(R_{obs} - HV_{clim})$$

$$B_{ret} = B_{clim} - KB_{clim}$$

 $B_{fcst} = forecast - truth (radiosonde)$

HIRS and AMSU

AMSU

Temperature Errors for 40 N to 80 N Latitude - Simulated Data

Retrieval Assimilation Conclusions

- Need to use proper error covariance matrix
- Retrieval assimilation is more

economical for advanced IR sounders

(AIRS, IASI, CrIS).

New and Old Algorithm Product Capabilities

New era: Software and algorithms work for variety of satellite and in-situ data streams