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Recommended Readings:

• Geir Evensen, 2006: Data Assimilation: The Ensemble
Kalman Filter, Springer, 280 pages, is a nice handbook that
also provides a good summary of the history. Cautionary
notes

– There have been many important developments since
book has been completed (most likely in early 2005)

– When considering the computational cost of the alter-
native computational algorithms, the book does not
really consider that the algorithms are usually imple-
mented on parallel computers (this is the case for an
operational NWP model)

– A little too much credit is claimed by the author–this
limits the value of the book only as a source on history

• Brian Hunt, Eric Kostelich and Istvan Szunyogh, 2007:
Efficient Data Assimilation for Spatiotemporal Chaos: a
Local Ensemble Kalman Filter. Physica D. Available from
the Weather-Chaos web page.
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Mathematical Formulation, following Brian Hunt (the most
elegant formulation I am aware of)

The Analysis Problem:

• Consider a system governed by the ordinary differential
equation

dx

dt
= F (t,x), (1)

where x is an m-dimensional vector representing the state
of the system at a given time.

• Suppose we are given a set of (noisy) observations of the
system made at various times.

• We want to determine which trajectory {x(t)} of (1) “best”
fits the observations. For any given t, this trajectory gives
an estimate of the system state at time t.
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Notation

• Let us assume that the observations are the result of mea-
suring quantities that depend on the system state in a
known way, with Gaussian measurement errors.

• An observation at time tj is a triple (yo
j , Hj,Rj), where yo

j

is a vector of observed values, and Hj and Rj describe the
relationship between yo

j and x(tj):

yo
j = Hj(x(tj)) + εj,

where εj is a Gaussian random variable with mean 0 and
covariance matrix Rj.

• Here, a perfect model is assumed: the observations are
based on a trajectory of (1), and our problem is simply to
infer which trajectory produced the observations. In a real
application, the observations come from a trajectory of the
physical system for which (1) is only a model.
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The maximum likelihood estimate for the trajectory that
best fits the observations at times t1 < t2 < · · · < tn.

• The likelihood of a trajectory x(t) is proportional to
n∏

j=1

exp(−[yo
j −Hj(x(tj))]TR−1

j [yo
j −Hj(x(tj))]),

since the observational errors are normally distributed and
are assumed to be independent at the different observation
times. The most likely trajectory is the one that maximizes
this expression.

• Equivalently, the most likely trajectory is the one that min-
imizes the “cost function”

Jo({x(t)}) =

n∑

j=1

[yo
j −Hj(x(tj))]TR−1

j [yo
j −Hj(x(tj))]. (2)

Thus, the “most likely” trajectory is also the one that best
fits the observations in a least square sense.
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Replacing the Trajectory with the State at a Particular
Time

• (2) expresses the cost Jo as a function of the trajectory
{x(t)}. To minimize the cost, it is more convenient to
write it as a function of the system state at a particular
time t.

• Let Mt,t′ be the map that propagates a solution of (1) from
time t to time t′. Then

Jo
t (x) =

n∑

j=1

[yo
j −Hj(Mt,tj(x))]

TR−1
j [yo

j −Hj(Mt,tj(x))] (3)

expresses the cost in terms of the system state x at time
t.

• To estimate the state at time t, we attempt to minimize
Jo

t .
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Remarks

• In practice the observations do not have to be all collected
at tn. In a typical implementation, at tn we assimilate all
observations that were collected at times t in the window
tn−∆t/2 < t < tn+∆t/2, where ∆t = tj−tj−1, j = 2, . . . , n.

• For a nonlinear model, there is no guarantee that a unique
minimum exists.

• Even if a minimum exist, evaluating Jo
t is apt to be compu-

tationally expensive, and minimizing it may be impractical.

• But, if both the model and the observation operators Hj

are linear, the minimization is quite tractable, because Jo
t is

then quadratic. Furthermore, one can compute the min-
imum by an iterative method, namely the Kalman Filter
(Kalman 1960; Kalman and Bucy 1961).
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Linear Scenario: the Kalman Filter

• In the linear scenario, we can write Mt,t′(x) = Mt,t′x and
Hj(x) = Hjx where Mt,t′ and Hj are matrices.

• We now describe how to perform

– a forecast step from time tn−1 to time tn

– followed by an analysis step at time tn,

– in such a way that if we start with the most likely sys-
tem state, given the observations up to time tn−1, we
end up with the most likely state given the observa-
tions up to time tn.
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The estimate of the state and the uncertainty at tn−1

• Suppose the analysis at time tn−1 has produced a state
estimate x̄a

n−1 and an associated covariance matrix Pa
n−1.

In probabilistic terms, x̄a
n−1 and Pa

n−1 represent the mean
and covariance of a Gaussian probability distribution that
represents the relative likelihood of the possible system
states given the observations from time t1 to tn−1.

• Algebraically, what we assume is that for some constant c,
n−1∑

j=1

[yo
j −HjMtn−1,tjx]

TR−1
j [yo

j −HjMtn−1,tjx] = (4)

= [x− x̄a
n−1]

T(Pa
n−1)

−1[x− x̄a
n−1] + c.

In other words, the analysis at time tn−1 has “completed the
square” to express the part of the quadratic cost function
Jo

tn−1
that depends on the observations up to that time as

a single quadratic form plus a constant.

• The Kalman Filter determines x̄a
n and Pa

n such that an
analogous equation holds at time tn.
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The Kalman Filter I

• We propagate the analysis state estimate x̄a
n−1 and its co-

variance matrix Pa
n−1 using the forecast model to produce

a background state estimate x̄b
n and covariance Pb

n for the
next analysis:

x̄b
n = Mtn−1,tnx̄

a
n−1, (5)

Pb
n = Mtn−1,tnP

a
n−1M

T
tn−1,tn

. (6)

• Under a linear model, a Gaussian distribution of states at
one time propagates to a Gaussian distribution at any other
time, and the equations above describe how the model
propagates the mean and covariance of such a distribution.
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The Kalman Filter II

• Next, we want to rewrite the cost function Jo
tn

given by
(3) in terms of the background state estimate and the
observations at time tn. (This step is often formulated
as applying Bayes’ Rule to the corresponding probability
density functions.) In (4), x represents a system state at
time tn−1. In our expression for Jo

tn
, we want x to represent

a system state at time tn

• Using (5) and (6) yields that part of the cost function at
tn that reflects the effect of observations collected up to
tn
n−1∑

j=1

[yo
j−HjMtn,tjx]

TR−1
j [yo

j−HjMtn,tjx] = [x−x̄b
n]

T(Pb
n)

−1[x−xb
n]+c.

• It follows that the total cost function at tn is
Jo

tn
(x) = [x−x̄b

n]
T(Pb

n)
−1[x−x̄b

n]+[yo
n−Hnx]TR−1

n [yo
n−Hnx]+c.

(7)
where the second term reflects the effects of observations
collected at tn
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The Kalman Filter III

• To complete the data assimilation cycle, we determine the
state estimate x̄a

n and its covariance Pa
n so that

Jo
tn
(x) = [x− x̄a

n]
T(Pa

n)
−1[x− x̄a

n] + c′

for some constant c′.

• Equating the terms of degree 2 in x, we get

Pa
n =

[
(Pb

n)
−1 + HT

nR−1
n Hn

]−1
. (8)

• Equating the terms of degree 1, we get

x̄a
n = Pa

n

[
(Pb

n)
−1x̄b

n + HT
nR−1

n yo
n

]
. (9)

• The last equation in some sense (consider, for example, the
case where Hn is the identity matrix) expresses the analysis
state estimate as a weighted average of the background
state estimate and the observations, weighted according
to the inverse covariance of each.
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The Kalman Filter IV
Equations (8) and (9) can be written in many different but
equivalent forms

• Using (8) to eliminate (Pb
n)

−1 from (9) yields

x̄a
n = x̄b

n +Pa
nH

T
nR−1

n (yo
n−Hnx̄b

n) = x̄b
n +K(yo

n−Hnx̄b
n) (10)

• The matrix K = Pa
nH

T
nR−1

n is called the Kalman gain. It
multiplies the difference between the observations at time
tn and the values predicted by the background state esti-
mate to yield the increment between the background and
analysis state estimates.

• Rearranging (8) yields

Pa
n = (I + Pb

nH
T
nR−1

n Hn)−1Pb
n = (I−KH)Pb

n. (11)

This expression is better than the previous one from a
practical point of view, since it does not require inverting
Pb

n.
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The Nonlinear Scenario: The Extended Kalman Filter

• Many approaches to data assimilation for nonlinear prob-
lems are based on the Kalman Filter, or at least on mini-
mizing a cost function similar to (7).

• At a minimum, a nonlinear model forces a change in the
forecast equations (5) and (6), while nonlinear observation
operators Hn force a change in the analysis equations (10)
and (11)

• The Extended Kalman Filter (see, for example, Jazwin-
ski 1970) computes x̄b

n = Mtn−1,tn(x̄
a
n−1) using the nonlinear

model, but computes Pb
n using the linearization Mtn−1,tn of

Mtn−1,tn around x̄a
n−1. The analysis then uses the lineariza-

tion Hn of Hn around x̄b
n.
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Difficulties with the Implementation of the Extended Kalman
Filter

• It is not easy to linearize the dynamics for a complex, high-
dimensional model, such as a global weather prediction
model.

• The number of model variables m is several million, and as
a result the m × m matrix inverse required by the analysis
cannot be performed in a reasonable amount of time.

• The use of the linear evolution equations can lead to an
unbounded linear instability (see chapter 4.2.3 in Evensen
2006).
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Practical Implementations at the NWP Centers

• Approaches used in operational weather forecasting gener-
ally eliminate for pragmatic reasons the time iteration of
the Kalman Filter.

• NCEP/NWS: data assimilation is done every 6 hours with
a 3D-VAR method, in which the background covariance
Pb

n is replaced by a constant matrix B The 3D-VAR cost
function also includes a nonlinear observation operator Hn,
and is minimized numerically to produce the analysis state
estimate xa

n.

• The 4D-VAR method (e.g., Le Dimet and Talagrand 1986;
Talagrand and Courtier 1987) used by the European Cen-
tre for Medium-Range Weather Forecasts uses a cost func-
tion that includes a constant-covariance background term
as in 3D-VAR together with a sum like (2) accounting for
the observations collected over a 12 hour time span.
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