





# JCSDA and the NCEP Environmental Modeling Center

Stephen J. Lord Director NCEP Environmental Modeling Center

## Overview

- EMC Organization
- JCSDA and NCEP/EMC Activity Summary
- Summary

## **EMC** Mission

#### In response to operational requirements:

#### • Maintain

- the scientific correctness and integrity of operational forecast systems
- modify current operational system to adapt to ever-present external changes

#### • Enhance numerical forecasts

- Test and improve NCEP's numerical forecast systems via
  - Scientific upgrades
  - Tuning
  - Additional observations

#### • Transition and Develop operational numerical forecast systems

- transform & integrate
  - Code
  - Algorithms
  - Techniques

from research status to operational status on NCEP computers



# JCSDA-NCEP/EMC Activity Summary

- Relevant JCSDA-EMC development and implementations
- Note: EMC Data Assimilation and NESDIS-JCSDA personnel are colocated

### NCEP-JCSDA Instrument and Radiative Transfer Development Projects 2007-09

- New observations implemented operationally at NCEP
  - 1 May 2007
    - COSMIC
    - AIRS (all FOV)
  - 29 May 2007
    - METOP AMSU, HSB, HIRS
    - GOES 1x1 FOV sounder radiances
  - December 2007
    - JMA high density winds
    - SBUV-8
    - September 2008

Windsat

- To be implemented February 2009
  - IASI



- Observations under development (CRTM, tested with NCEP systems)
  - OMI, GOME, MLS
  - ASCAT
  - AMSR-E
  - SSM/IS
  - CHAMP
  - AIRS (water vapor)
  - CrIS, ATMS
- New analysis variables (NCEP)
  - Constituent gas assimilation
  - Aerosols
- Improved radiative transfer (CRTM, tested with NCEP systems)
  - Surface emissivity models (MW & IR)
  - Cloud absorption & reflection
- Data sets tested at NCEP (albedo, vegetation, land type)
  - Unified land surface treatment (data assimilation, model)

NPP, NPOESS advanced instruments

# Land Information System (LIS)

- NOAA-NASA-USAF collaboration
  - K. Mitchell-M. Ek (NOAA)
  - C. Peters-Lidard (NASA)
  - J. Eylander (USAF)
- LIS hosts
  - Land surface models
  - Land surface data assimilation and provides



- Regional or global land surface conditions for use in
  - Coupled NWP and Climate models
  - Stand-alone land surface applications

## JCSDA sponsored Land Surface Improvements for NCEP LSM



- Reformulation of surface roughness length for heat in GFS PBL reduces daytime LST cold bias over desert and arid regions in the warm season.
- Results in larger amounts of satellite data accepted in the data assimilation over land in the GSI/CRTM.

# JCSDA sponsored SST development for NCEP



So far, impact on tropical temperature forecasts is negative



Xu Li

Impact of DTLM model on GFS predictive skill (OCN – CTL). January 2008 (31 x 4 samples)



## NCEP Ocean Data Assimilation development involving JCSDA sponsored work

- Investigate advanced ODA techniques
  - Improved observation representativeness errors (with Bob Miller, OSU-JCSDA)
  - Associated Ocean Data Assimilation activities
    - Experimental Ensemble Data Assimilation system (with GFDL)
    - Reduced Kalman filtering (with JPL)
- JASON-2 data flow (with NAVOCEANO)
- Wave data assimilation proposed
- Future work with GMAO, NRL
  - HYCOM for real-time forecasting (NRL)
  - MOM4 for seasonal climate (GMAO)

# Offline NCEP Global Aerosol Modeling System

Ho-Chun Huang, Dongchul Kim, Youhua Tang, Sarah Lu, Pius Lee, Marina Tsidulko, Caterina Tassone, Jeff McQueen, Shrinivas Moorthi, Mark Iredell, Geoff DiMego, Paula Davidson<sup>1</sup>, Mian Chen<sup>2</sup>, Arlindo daSilva<sup>2</sup> and Thomas Diehl<sup>2</sup> NOAA/NWS/NCEP/EMC <sup>1</sup>NOAA/ARL <sup>2</sup>NASA/GSFC

- NCEP GFS
- NASA GOCART (NASA Goddard Global Ozone Chemistry Aerosol Radiation and Transport Model)
- Applications
  - (1) dust modeling
  - (2) aerosol modeling



#### PM2.5 Regional Forecast Comparison for surface stations over Texas



# Other JCSDA-related Development impacting NCEP

- Ozone operational implementations at NCEP
  - SBUV version 8 and quality control (Nov. 2007, Sept. 2008)
  - In progress
    - GOME-2
    - OMI
    - MLS and HIRDLS
- Cloudy radiances (CRTM) tested with NCEP GFS

# CRTM Development (with NESDIS)

- EMC supporting public server for community code access to
  - CRTM
  - NCEP model and data assimilation code
- CRTM driver for offline development and testing
- IASI longwave temperature channels
- Upper tropospheric moisture
- Spectral response functions for SSM/IS
- Adoption of standard IGBP land classification (add tundra)
- Satellite footprint codes (Gayno) fundamental for NPOESS

# GFS Diagnostic Activities (with NRL, GMAO)

- "Dropouts Team"
  - Reallocated effort from EMC, NCO (4 FTE)
  - Defined "dropout"
  - Diagnosed cases
    - Runs from ECMWF IC ("ECM") improve results often
    - Impacts of satellite data show case-dependent impacts
  - Diagnosed deficiencies
    - Sat wind QC
    - Bias correction and thinning of A/C data
    - Diurnal bias correction
    - Potentially important impact of humidity through satellite data
    - Negative moisture in background model field
    - Augmented and correct observations data base information
- Stimulated many new projects to correct deficiencies





# The Gridpoint Statistical Interpolation (GSI) System

- Capabilities
  - Currently 3d-var
  - Future
    - 4d-var for global, regional and hurricane applications with Situation-Dependent Background Errors (SDBE)

#### Or

- Major component of Ensemble Data Assimilation (EnsDA)
  Or
- Hybrid system
- Operational for
  - Global Forecast System (GFS)
  - North American Model (NAM)
  - Real-Time Mesoscale Analysis (RTMA)
- Major focus of NCEP/EMC and NASA/GSFC/GMAO collaborative atmospheric analysis development
  - GMAO 4d-var code delivered to NCEP Jan 2009

## EMC-GMAO-STAR Code Management for Atmospheric Data Assimilation



# Summary

- Satellite development projects in progress
  - ASCAT
  - SSM/IS
  - GOME-2
  - OMI
  - CHAMP and add'l GPSRO
  - CrIS and ATMS
  - Cloudy radiances
  - Aerosols
- JCSDA sponsored development contributes to NCEP forecast skill increases
- Strong partnership in core data assimilation activities with NASA/GMAO
  - Potential for increased activities with AFWA and NCAR
  - Potential research model available with top at 600 km in 2 years
- Increased interaction with AFWA through Visiting Scientists at JCSDA
- Evaluation plan for EnsDA in progress

# Thanks Questions?

# Resource Gaps (1) Current Computing Capabilities

|                                                | ECMWF   | Met Office<br>(Also ECMWF) | NCEP      |
|------------------------------------------------|---------|----------------------------|-----------|
| P6 compute<br>processors (ops)                 | 8192    | 3295                       | 4608      |
| Disk per cluster                               | 1800 TB | 350 TB                     | 170 TB    |
| Sustained performance relative to previous ops | 5X      | 6.5X                       | 3X        |
| Expected computing increase in 2011            | 2X      | 3X                         | 2012 – 3X |

All systems installed within 6 months of 1/2009

## Resource Gaps (2) Normalized Computing Capabilities

Normalized 2010 Estimated Cycles per Unit Mission



Computing cycles (TFlop) normalized by Mission and by NCEP capability

21

# Resource Gaps (3) Scientific Personnel (Meteorology)

| Function                                                            | UK Met Office<br>(global and regional)<br>base | ECMWF<br>(global only)<br>(base + contract) | NCEP/EMC, JCSDA<br>(global and regional)<br>base + contract combined |  |
|---------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|
| Processing, Quality Control and Data Assimilation                   | 24                                             | 12 (9 + 3)                                  | 17                                                                   |  |
| Improve use of satellite data                                       | 33                                             | 18 (5 + 13)                                 | 17.5 [2.5 + <mark>15 (11, 4)]</mark>                                 |  |
| Model dynamics                                                      | 8                                              | 4                                           | 6 (NAM & GFS)                                                        |  |
| Model physical parameterizations                                    | 36                                             | 11 (8 + 3)                                  | 6.3                                                                  |  |
| Convective scale NWP                                                | 5                                              | 0                                           | 0.5                                                                  |  |
| Ensemble forecasting                                                | 11                                             | 15 (10 + 5)                                 | 8                                                                    |  |
| Atmospheric dispersion and composition                              | 7                                              | 8.5 (0.5 + 8)                               | 8                                                                    |  |
| Evaluation and diagnostics                                          | 14                                             | 6 (5 + 1)                                   | 6.8                                                                  |  |
| Software infrastructure                                             | 19                                             | 8 (7 + 1)                                   | 6 (WRF, ESMF, NEMS)                                                  |  |
| Maintainance of operational system (implementations)                | 24                                             | 5                                           | 6.4                                                                  |  |
| Postprocessing                                                      | 9                                              | 4 (3 + 1)                                   | 4                                                                    |  |
| Total                                                               | 183                                            | 91.5 (56.5 + 35)                            | 85.5                                                                 |  |
| Major deficiencies "Resources under management" (Managed elsewhere) |                                                |                                             |                                                                      |  |

## Next generation NOAA Production Suite



# Forces for Change



- Increasing emphasis on multi-model ensemble approaches that build on the NCEP model suite
  - SREF
  - NAEFS
  - Climate Forecast System
- Entering the NPOESS era
  - More rapid access to hyperspectral data
  - GPS soundings
  - Higher resolution surface radiance data
- All models run within ESMF
  - Models run concurrently
  - Coupled
  - Spanning all scales
  - NUOPC/Unified approach
- Operational Earth System model more explicit hydro, 24 climate and ecosystems applications

#### **ESMF-based System**



#### National Environmental Modeling System (NEMS) (uses standard ESMF compliant software)



\* Earth System Modeling Framework (NCAR/CISL, NASA/GMAO, Navy (NRL), NCEP/EMC), NOAA/GFDL

2, 3 etc: NCEP supported thru NUOPC, NASA, NCAR or NOAA institutional commitments 25 Components are: Dynamics (spectral, FV, NMM, FIM, ARW, FISL, COAMPS...)/Physics (GFS, NRL, NCAR, GMAO, ESRL...)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Picture_0.jpeg)

# NCEP's Hurricane Forecast Guidance

- GFS
  - T382/64L
  - 3-D var
  - Vortex relocation
  - State of the science physics
- GFDL
  - Movable nested
  - Air-sea coupled
  - Inner nest
    - 9 km/42L
  - Specialized vortex initialization,
  - Upgraded with some GFS physics (2003, 2004)
- HWRF added to GFDL in 2007
  - Same physics as GFDL
  - Upgrade to improve intensity, June 2008

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

# **Real Time Ocean Forecasting**

- Wave Modeling
  - Global and Regional
  - Unified model approach
  - NOAA Wavewatch III
- Basin-scale Ocean Model
- Sea Surface Temperature & Winds
  - NCEP Ocean Prediction Center support
    - Gulfstream analysis & forecast
- Real-time Sea Ice products
  - Alaska Region support (fishing)

### Seasonal to Interannual Prediction at NCEP

![](_page_30_Figure_1.jpeg)

# Overview

- Evolutionary combination of the global SSI analysis system and the regional ETA 3DVAR
  - Major code re-design
  - New features
- Uses a grid space definition of the background errors
  - Allows use of situation dependent background errors
- Final testing for Global Forecast System (GFS)

- Code re-designed for community use
  - F90/95 structures and utilities
  - Improved efficiency
    - Re-designed data distribution
    - Some OpenMP
  - Better documentation
  - Improved portability
    - Less dependency on IBM
- Currently 32 registered groups/users
  - NCEP providing only minimal support for external groups due to lack of resources
- Major focus of NCEP and NASA/GSFC/GMAO atmospheric analysis development
  - To date they have provided the most updates

#### Incorporated new features

- Variational QC available
- Spatial derivatives allows:
  - non-local operators
  - improved definition of balance operators
  - dynamical balance constraints
  - simplified 4DVAR
- Improved control over observational errors
- Improved moisture analysis variable
- Diagnostic files for background and each outer iteration

- Incorporated new features (cont.)
  - Strong and weak dynamical constraints
  - Adjoint and TL of GSI (GMAO)
  - Additional observational data
    - Precipitable water
    - Radar radial winds (w or w/o superobs)
    - GPS RO (COSMIC, CHAMP)
    - Additional satellite radiances

- Incorporated new features (cont.)
  - Situation dependent background error available for some modes of operation (RTMA)
  - Available for use in all WRF dynamical cores
  - New version of Community Radiative Transfer Model (CRTM)
  - Improved memory usage and documentation
- Multi-organizational code management

# Ongoing work - GSI

- Including
  - Simplified 4DVAR
  - SST analysis by direct use of radiances
    - IR and MW data
  - Variational bias correction for conventional data
- Developing situation dependent background errors for all applications
- Adding new observations
  - AMSR-E
  - Windsat
  - SSM/IS
  - New analysis variables
    - Constituent gas assimilation beginning
- Improved radiative transfer
- Re-structuring for ESMF compatibility

## Ongoing work – Simplified 4DVAR

- Adiabatic time derivatives
  - Filtered to retain "slow" modes
  - Used to extrapolate state to obs times
  - Captures obs time changes due to slow modes
- No additional cost since calculations already included in constraint term

# Summary

- GSI analysis system
  - One possibility for NCEP's next-generation data assimilation system
  - Evolutionary path
  - Many new features have not yet been exercised
    - Variational QC
    - New CRTM
  - New observations capability
  - Used by community
    - Global
    - WRF

![](_page_39_Figure_0.jpeg)

BO CUI, GCWNB/ENC/NCEP/NOAA

## Weather Research and Forecast (WRF) Modeling System

- Develop an advanced mesoscale forecast and assimilation system
- Promote closer ties between research and operations

#### Concept:

Design for 1-10 km horizontal grids Portable and efficient on parallel computers Well suited for a broad range of applications Community model with direct path to operations Collaborators: NCEP/EMC, NCAR, AFWA, Navy, NOAA/ESRL, U. Okl&!

## **Spring Program 2007**

![](_page_41_Figure_1.jpeg)

Circles denote locations of rotating updrafts where updraft helicity is at least 50 m<sup>2</sup>s<sup>-2</sup>

![](_page_41_Figure_3.jpeg)

INIT 2007081618Z for 126 h FCST VALID 2007082200Z START POS (13.70 LAT, -55.70 LON) FINAL POS (20.90 LAT, -88.40 LON) X=12 h POS

![](_page_42_Figure_1.jpeg)

MAX WIND (KTS) 139.495

## **LIS Capabilities**

- Flexible choice of 7 different land models
  - Includes Noah LSM used operationally by NCEP and AFWA
  - Includes NASA Catchment model used by GMAO

#### • Flexible domain and grid choice

- Global: such as NCEP global model Gaussian grid
- Regional: including very high resolution (~.1-1 km)
- Data Assimilation
  - Based on Kalman Filter approaches
- High performance parallel computing
  - Scales efficiently across multiple CPUs
- Interoperable and portable
  - Executes on several computational platforms
  - NCEP and AFWA computers included
- Being coupled to NWP & CRTM radiative transfer models
  - Coupling to WRF model has been demonstrated
  - Coupling to NCEP global GFS model is under development
  - Coupling to JCSDA CRTM radiative transfer model is nearing completion
- Next-gen AFWA AGRMET model will utilize LIS with Noah
- NCEP's Global Land Data Assimilation utilizes LIS

## **Collaborative Software Development**

- GSI intended for both operations and research applications
  - Community-based code with multi-agency users
- Code Management
  - Minimize redundant development
  - Establish code development standards and procedures
    - Principal Code Manager (EMC)
    - Associate Code Manager (partners)
    - Criteria for accepting code updates
    - Code managed by subversion repository
  - Establish areas of responsibility and milestones among partners
  - Technical oversight group, representatives from
    - EMC
    - GMAO
    - GSD (Boulder)
    - AFWA
- Example: EMC-GMAO collaboration
  - Same code for operations (EMC) and research (GMAO)
  - Bi-weekly progress at group meetings
  - GMAO: 4d-var infrastructure
  - EMC+JCSDA: adding capabilities for new satellite data
  - Quarterly code mergers

# Summary

- Focused on Multi-disciplinary Environmental Forecasting (atmosphere, ocean, land surface, cryosphere)
- Increased community involvement (R2O, O2R)
- Strong partnerships in core data assimilation activities with NASA/GMAO
  - Potential for increased activities with NCAR (July meeting)
  - Potential research model available with top at 600 km in 2 years
- Preparing for future with next-generation Production Schedule and ensemble-based products