## NASA Contributions to the JCSDA GMAO & Hydrological Sciences Branch

**Michele Rienecker** 

Ron Gelaro, Ricardo Todling, Emily Liu, Steven Pawson, Ron Errico, Arlindo da Silva

**Christian Keppenne & Guillaume Vernieres** 

Christa Peters-Lidard, Rolf Reichle & Sujay Kumar

Global Modeling and Assimilation Office (GMAO) NASA/Goddard Space Flight Center



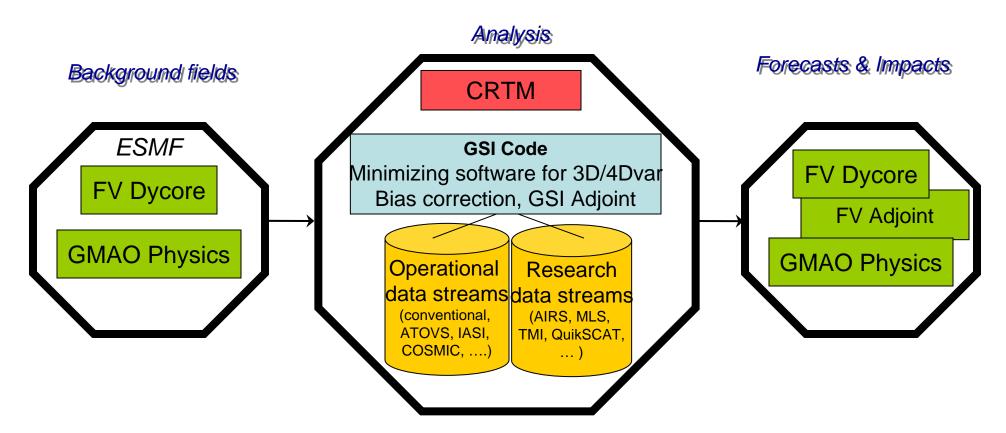
JCSDA Advisory Board Presentation January 27, 2009

### NASA Participation in the JCSDA Research Partner

## ✓ HQ supports the JCSDA FFO

### ✓ Global Modeling & Assimilation Office

- Joint atmospheric data assimilation system development with NCEP
  Contributing to transition of NASA's research data into operations our focus: AIRS, MLS T and O<sub>3</sub> retrievals
- Collaborating in preparations for NPP/NPOESS our focus: OMPS
- Transitioning GOCART to GFS for air quality analysis and prediction
- Ocean data assimilation collaboration with NCEP and with JCSDA science team


#### Hydrological Sciences Branch

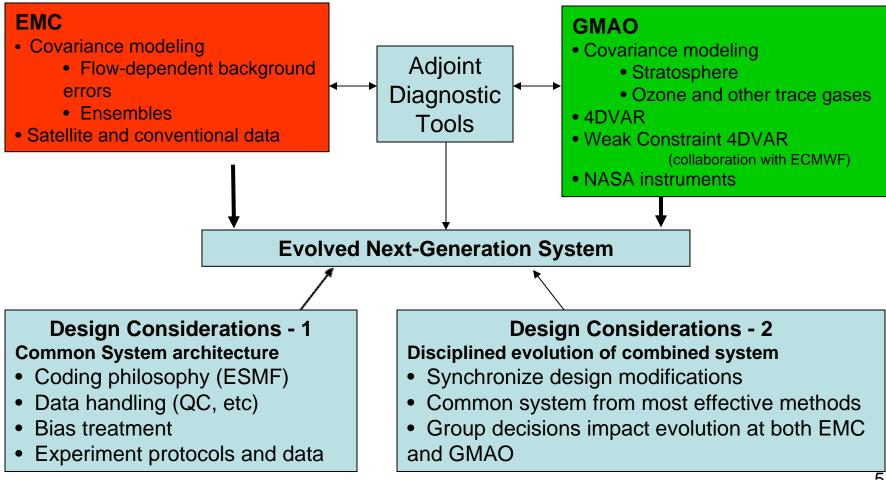
- Implementation of Land Information System (LIS) in NCEP's GFS
- □ Facilitating land data assimilation via LIS (with GMAO) for Noah LSM
- Contributing LIS to the JCSDA science team

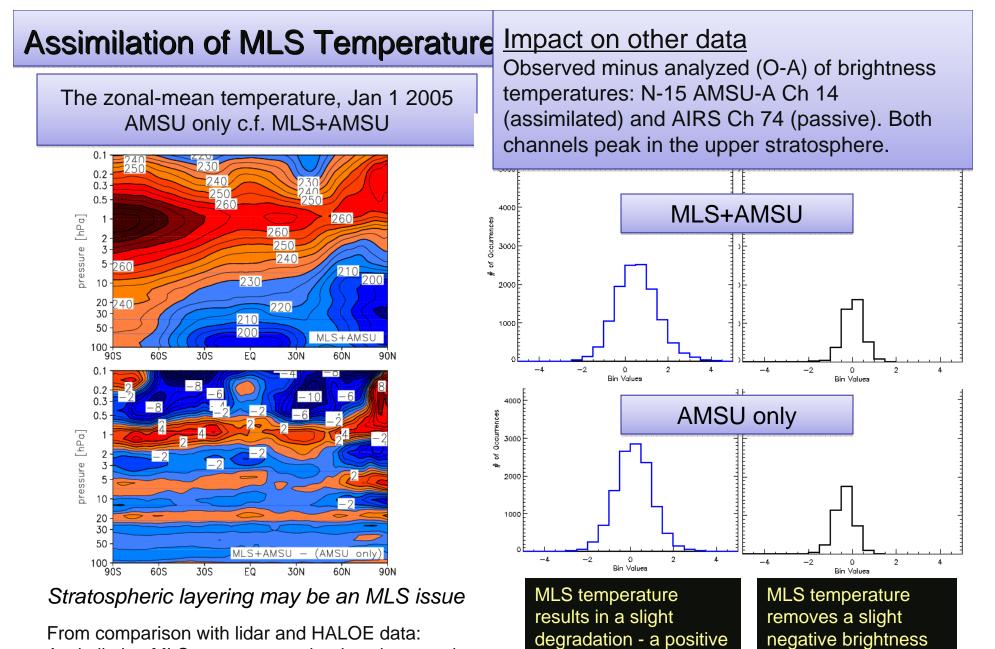
# A few highlights....

- GMAO-NCEP coordination on atmospheric data assimilation
- MLS Temperature & Quick-look MLS product tests
- System update 4DDA system Observing system impacts with Adjoint tools
- LIS and Land data assimilation
- MOM4 and Ocean data assimilation

# **GEOS-5 ADAS**




#### **Analysis Component**


□ NCEP-GMAO Gridpoint Statistical Interpolation (GSI)

- □ JCSDA Community Radiative Transfer Model (CRTM)
- □ Adjoints for 4D-Var, data impact studies

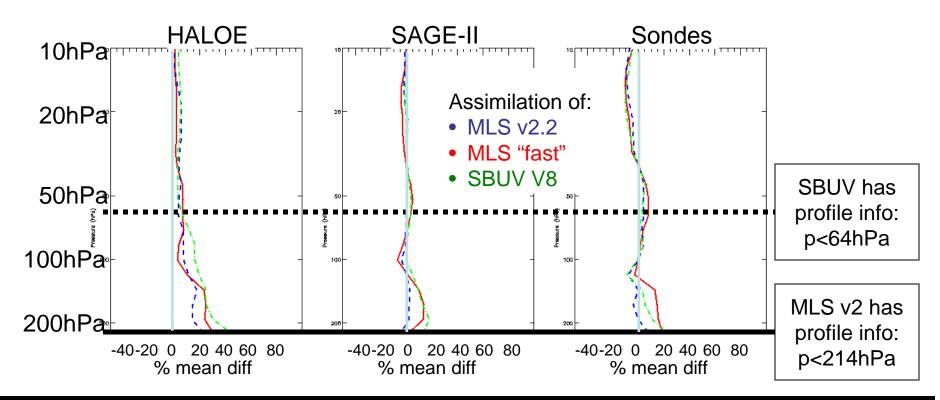
### **GMAO- NCEP/EMC Collaborating on Data Assimilation Development** Latest code merger is 4DVar-capable

**Complementary Development Focus Common Architecture** 





bias and a wider pdf.


Assimilating MLS temperatures leads to improved structure esp. stratopause and lower mesosphere

Pawson, Sienkiewicz, et al.

6

temperature bias.

## **Developing Real-time MLS** Impacts of Quick-Look MLS O<sub>3</sub> in GEOS-5



Mean difference (%) of assimilation minus validation data: 30°-60°N, Jan 2005

- MLS V2.2 is closest to all validation data types in lower stratosphere
- "Fast" processed MLS does not perform better than SBUV in this region

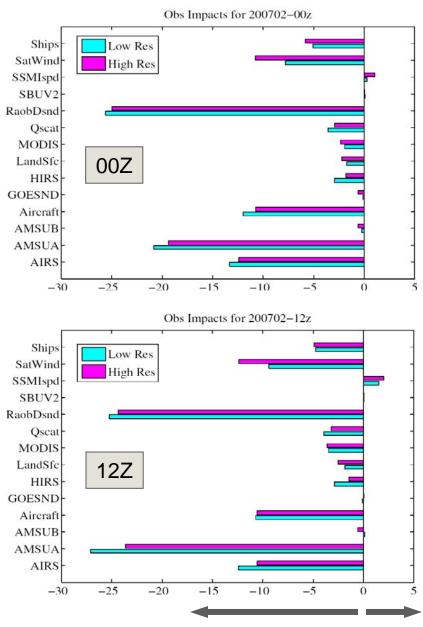
Presently iterating with MLS team to improve on this "fast" product

### The 4DDA System

Ricardo Todling & Yannick Trémolet Ron Gelaro

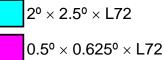
Impacts from Adjoint Tools 4DVar prototype experiments

Just completed merge with latest NCEP GSI Provides Adjoint tools to NCEP (need model adjoint)


## Summary of 4DVar Progress at GMAO

- Prototype NASA GEOS DAS 4DVAR now available
- Encouraging preliminary results with prototype 6-hr and 12-hr cycle 4DVAR
- Various adjoint-based diagnostic tools now available in GEOS DAS: forecast sensitivities, singular vectors, analysis sensitivity, and observations impact.
- Folded into latest code merge with NCEP
- Much work ahead:
  - Update TLM/ADM with cubed-sphere-based dynamical core
  - Adjoint of physics modules
  - Bring prototype 4DVAR to Operational-readiness status
  - Work on weak constraint 4DVAR formulation

The implementations done thus far benefited greatly from the original infrastructure of EMC-GMAO GSI


#### and

from 1-year visit by Yannick Trémolet from ECMWF

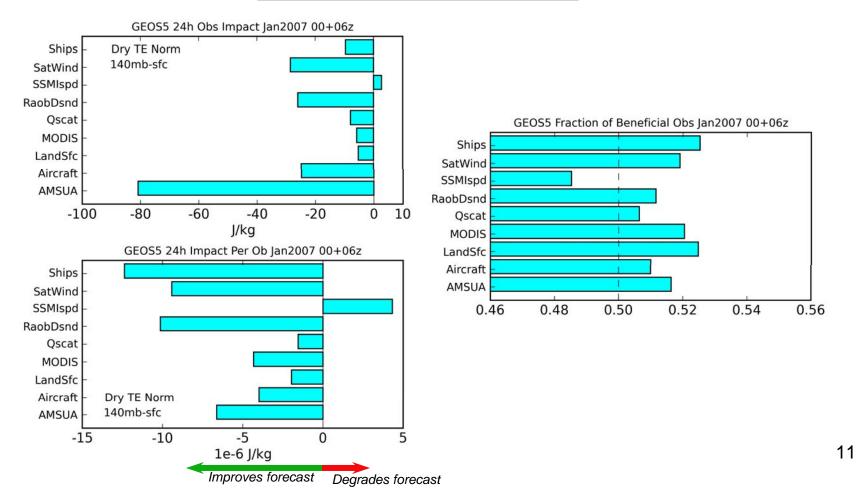


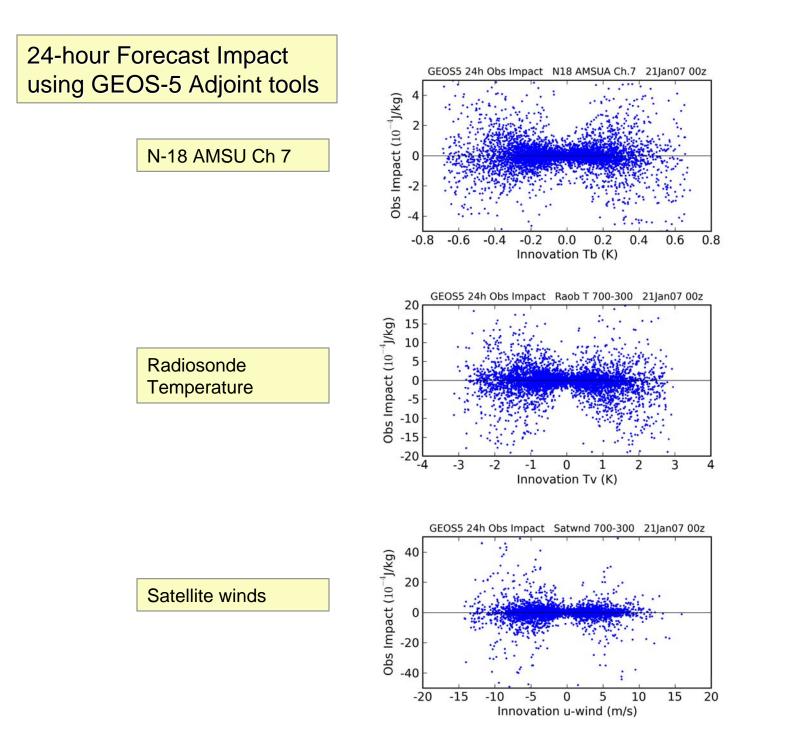
Observation impacts on 24-hr forecasts from GEOS-5 3Dvar for February 2007.

The relative impacts of the various observing systems does not change significantly when resolution changes  $\Rightarrow$  low-resolution experiments can be used effectively for quick looks at the impact of new data types



Observation sensitivity and impact studies require the adjoint of the underlying data assimilation system:


Model adjoint: forecast sensitivity Analysis adjoint: observation sensitivity

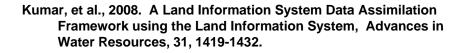

Trémolet (2008) developed the "automatic" calculation of the analysis adjoint within the assimilation system.

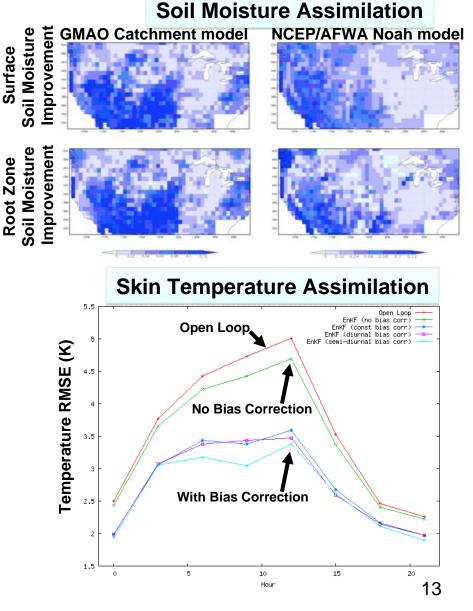
#### THORPEX: Observation Impact Intercomparison for January 2007

Gelaro, Langland, Cardinali

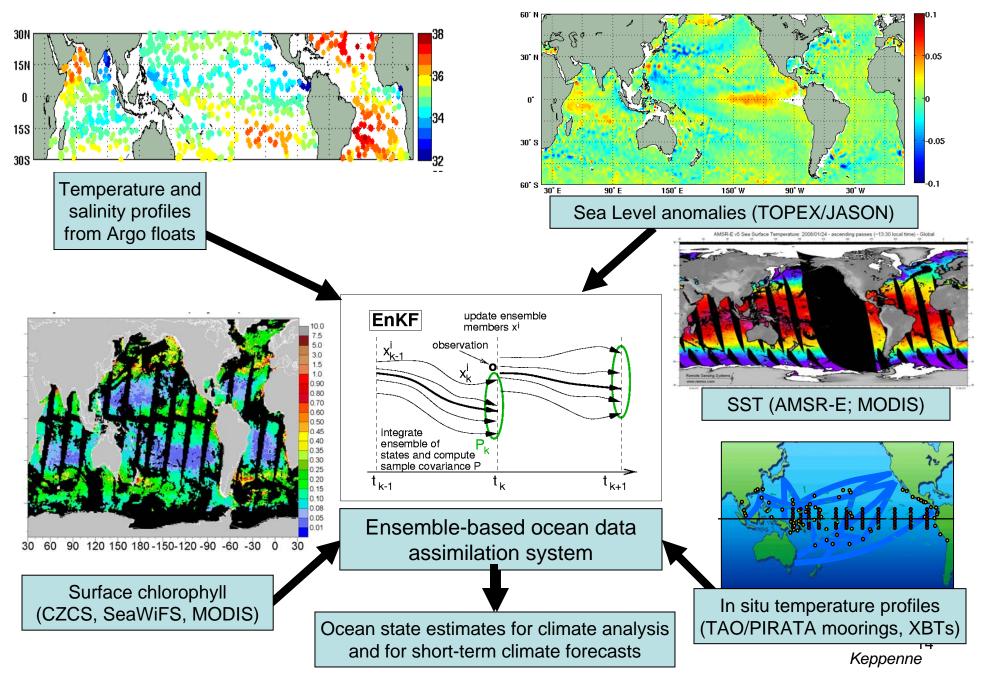








#### Land Information System Provides a unified land data assimilation Framework for the JCSDA

S.V. Kumar, R.H. Reichle, C.D. Peters-Lidard, R.D. Koster, X. Zhan, J.B. Eylander, K. Mitchell


NASA – AFWA - NCEP

- LIS integrating land surface models, assimilation algorithms, observational sources for users at NASA, AFWA, NCEP and JCSDA investigators – led by NASA/HSB (Peters-Lidard).
- GMAO-developed capabilities for land data assimilation have been implemented LIS
- Capabilities have been demonstrated for assimilating soil moisture, snow and skin temperature observations.





### **Ocean data assimilation in the GMAO**



## Ocean data assimilation in the GMAO

### GEOS-5/ODAS2.....

GMAO has implemented MOM4 in collaboration with GFDL, adopting NCEP's configuration

- Assimilation system for MOM4 implemented with ESMF under GEOS-5; Multivariate analyses for altimeter assimilation under test.

- Facilitates collaboration with NCEP - both assimilate altimeter data but use of different techniques

- Helps JCSDA to contribute to operational transition of Aquarius data assimilation and future mission planning (Jason-3, SWOT)

 Collaborating with ocean efforts from the FFO:
 A. Kaplan, M. Cane, N. Arnold: Models for Remotely-Sensed Sea Surface Heights and Temperatures in Ocean Data Assimilation
 R.N. Miller: Estimating Representation Error of Satellite and *in situ* Data for Data Assimilation into Ocean Climate Models

- MvOI and EnKF in a hybrid mode to supplement low-dimensional ensemble
- Implemented UKMO in situ data QC supplemented with tests from our existing system
- Using UKMO corrected XBT data set for climate analysis

## Summary

• GMAO's JCSDA efforts are focused towards improving the use of AIRS, MLS and OMI data and preparing for NPP/OMPS

- GMAO contributing to CRTM WG (identifying issues, evaluation of performance)
- Data assimilation adjoint efficient tool for observation impact studies
  - Complements traditional OSEs
  - Comparisons of impacts clarify deficiencies in data quality vs. assimilation methodology (GMAO and NRL; also

ECMWF)

- Can be applied to OSSEs for the Decadal Survey Missions
- 4DVar development maturing important to extract information from satellite data
- Aerosol and carbon species included with real-time system GSFC is collaborating with NCEP to bring GOCART to NCEP's system
- Emerging collaboration on ocean data assimilation Jason-1, OSTM, Aquarius
- Strong collaboration with NCEP and AFWA on land information system
- GMAO and NCEP collaboration -- research to and from operations
  - NASA now has improved system that delivers products to support:
    - NASA instrument teams (Aura, CERES, MODIS, CALIPSO) and field campaigns
    - NASA science (e.g., MERRA, seasonal forecast, atmospheric composition...)
    - Planning of Decadal Survey Missions

# JCSDA Oceans & Satellite Data

- Currently assimilating:
  - SST retrievals
  - sea-ice concentration
  - sea-surface height anomalies (from altimetry)
  - significant wave height (from altimetry).
- Preparing for sea-surface salinity (SMOS and Aquarius)
- Models:
  - HYCOM: NCEP (Real-time Ocean Forecast) and NRL
  - WW3: NCEP and NRL
  - MOM4: NCEP GODAS (climate) and GMAO
- Assimilation Methods:
  - NRL: NCODA MVOI is operational at FNMOC and NAVO, and runs in R&D with HYCOM
  - NCEP: univariate 3Dvar with MOM4; OI, 2Dvar with HYCOM
  - GMAO: MvOI and EnKF with MOM4

# JCSDA Oceans Project Team Objectives

 $\checkmark$  Coordinate efforts on the processing of altimeter data to improve the consistency between different data sources, and the estimates of tides, the geoid and mean ocean dynamic topography.

✓ Coordinate efforts to develop improved assimilation of altimetry data.

✓ Construct and conduct experiments that contribute to design considerations and justification for Jason-3 and SWOT.

• Coordinate efforts to develop more sophisticated and physicallybased assimilation methods for mean and spectral satellite observations of surface wind waves, especially from SAR wave data.

 ✓ Coordinate efforts aimed at assimilating satellite sea-surface salinity (SSS) data.

• Coordinate experiments that document the impact of data types identified by the Project Team.

JCSDA Ocean Projects Team

Jim Cummings, NRL (co-chair) Hendrik Tolman, NCEP (co-chair) Laury Miller, NESDIS Eric Bayler, NESDIS Guillaume Vernieres, GMAO

Expect to bring in FFO scientists Michele Riencker Dave Behringer