Observation Error Characterization for Radiance Assimilation of Clouds and Precipitation

Ralf Bennartz Oceanic & Atmospheric Sciences, University of Wisconsin - Madison

> Tom Greenwald CIMSS, University of Wisconsin

> > Andy Heidinger NOAA/NESDIS/ORA

Mark Kulie Oceanic & Atmospheric Sciences, University of Wisconsin

- Integrate Successive Order of Interaction (SOI) radiative transfer solver and its TL and AD models into the CRTM
- Provide quantitative estimates of observation error covariances attributed to uncertainties in microwave ice optical properties

SOI Integration Status

- For a more effective interface with the CRTM, the SOI solver and its TL and AD were rewritten from scratch to take advantage of CRTM routines
- SOI solver and its TL have been successfully integrated and tested in an experimental branch of the software repository; AD has been coded but not tested
- Plans are to test the AD model, merge the experimental branch into the trunk, and make the SOI solver available for CRTM V2.1

Uncertainties in Microwave Ice Optical Properties

- Active and passive observations are used via a physically consistent method to quantify errors
- Collocated CPR(94 GHz), MHS(89-190 GHz) and AMSR-E (6-89 GHz) dataset (Chen et al. 2008)
- Forward model framework:
 - IWC retrieved from observed CPR attenuation-corrected reflectivities
 - LWC: Cloud (CloudSat/AMSR-E); precipitation (L'Ecuyer & Stephens 2002) W-band Z-R relationship
 - Surface emissivity (FASTEM-2)
 - Atmospheric profiles: ECMWF analyses
 - Slant path version of SOI solver (8-stream)
- Particle types: DDA (nonspherical); soft spheres
- Errors/correlations classified according to cloud/precipitation conditions

Microwave Optical Properties Database

Liu (2004,2008)

Global Results - DDA Models Only

Cloud/Precip Category	Label	N _{obs}	Description
All clouds	AC	9043	All clouds, no precipitation.
Cold clouds	CC	2494	Cold clouds only (< 0 C), no precipitation.
Warm clouds	WC	2894	Warm clouds only (> 0 C), no precipitation.
All precipitation	AP	5153	All precipitation occurrences.
Stratiform (mid-lat)	SML	1911	Mid-latitude (lat. $> 30^{\circ} $) stratiform precipitation.
Stratiform (low FL)	SLFL	916	Mid-latitude stratiform, freezing level < 1 km.
Stratiform (high FL)	SHFL	583	Mid-latitude stratifor m, freezing level > 1 km.
Stratiform (brightband)	SBB	412	Mid-latitude stratiform with obvious brightband.
Low-topped convection	LTC	1148	Shallow, higher latitude (lat. $> 45^{\circ} $) convection.

Error Correlations

157/89V Error Correlations

89V/36V Error Correlations

157 GHz Variance

Error Covariance Matrix

Low Freezing Level Stratiform*

	18V	23V	36V	89V	157
18V	1.99	0.85	0.74	0.06	0.25
23V	1.70	1.99	0.75	0.13	0.24
36V	1.42	1.44	1.84	0.13	0.11
89V	0.18	0.43	0.40	5.21	0.41
157	0.80	0.75	0.33	2.13	5.13

High Freezing	
Level Stratiform*	

	18V	23V	36V	89V	157
18V	4.51	0.93	0.82	0.07	0.13
23V	3.52	3.17	0.81	0.05	0.09
36V	5.86	4.87	11.39	0.31	0.13
89V	0.57	0.35	4.17	15.79	0.55
157	0.60	0.35	1.00	4.99	5.15

*For the 40 dBZ_{int} data bin

Accomplishments

- SOI solver and its TL have been successfully tested and integrated into the CRTM
- Provide, for the first time, quantitative estimates of observation error covariances due to ice optical property uncertainties (a major source of error) for potential use in data assimilation
 - Errors found to be a function of IWP/Z_{int}, precipitation type, zenith angle
- Manuscript submitted to JAS: Uncertainties in Microwave Optical Properties of Frozen Precipitation: Implications for Remote Sensing and Data Assimilation - Kulie, Bennartz, Greenwald, Chen and Weng.

Extra Slides

Combined Active/Passive Modeling System

Evaluation of ice scattering models (MW)

- DDA (non-spherical)
 ✓Liu (2004/2008)
 ✓Kim (2006)/Kim et al. (2007)
 ✓Hong (2007)
- Spheres
 ✓ JCSDA (snow, hail, graupel)
 ✓ Surussavadee and Staelin (2006)

Database	Habit	Abbreviation	D _{max} (μm)	$R_e~(\mu m)$
Hong (2007)	Hexagonal Column	HC1	100-5500	42-610
Hong (2007)	Hollow Hex Column	HC2	100-5500	40-574
Hong (2007)	Hexagonal Plate	HP	100-5500	29-793
Hong (2007)	6-Bullet Rosette	HR6	100-5500	27-625
Hong (2007)	Aggregate	HA	100-5500	26-1416
Hong (2007)	Droxtal	HD	100-5500	45-2469
I. (0 000)		T ()1		
Liu (2008)	Long Hex Column		242-3626	55-771
L1u (2008)	Short Hex Column	LC2	166-2477	56-772
Liu (2008)	Block Hex Column	LC3	132-1974	55-766
Liu (2008)	Thick Hexagonal Plate	LP1	163-2434	57-767
Liu (2008)	Thin Hexagonal Plate	LP2	253-3794	53-769
Liu (2008)	3-Bullet Rosette	LR3	100-5000	30-666
Liu (2008)	4-Bullet Rosette	LR4	100-5000	37-591
Liu (2008)	5-Bullet Rosette	LR5	100-5000	40-635
Liu (2008)	6-Bullet Rosette	LR6	100-5000	42-674
Liu (2008)	Sector Snowflake	LSS	50-10000	61-502
Liu (2008)	Dendrite Snowflake	LDS	75-12453	40-506
Kim et al. (2007)	Hexagonal Column	KC	60-3000	23-590
Kim et al. (2007)	4-Bullet Rosette	KR4	60-3000	29-766
Kim et al. (2007)	6-Bullet Rosette	KR6	60-3000	33-875
SS06	Snow (soft sphere)	SS	100-15000	30-2968
SS06	Graupel (soft sphere)	SG	100-15000	23-2251
Snow	Snow (soft sphere)	FS	100-15000	24-2389
Graupel	Graupel (soft sphere)	FG	100-15000	38-3791
Hail	Hail (soft sphere)	FH	100-15000	50-4969

Z_e-IWC Relationships

 $Temp = -7.5^{\circ}C$

Combined Active/Passive Modeling

Cloud liquid water

- CloudSat products + AMSR-E LWP
- ✓ Liebe (1991) parameterization
- Water vapor & temperature
 - ✓ Co-located ECMWF model output
 - ✓ Rosenkranz (1998) parameterization
- Liquid precipitation
 - ✓ L'Ecuyer and Stephens (2002) W-band Z-R relation
- Ocean emissivity
 - ✓ FASTEM-2 surface emissivity model (DeBlonde and English 2001)
- RT Solver
 - ✓ Successive Order of Interaction (SOI)
 - ✓ Heidinger et al. (2006), O'Dell et al. (2006)

Ice Model Assessment Case Study

Individual Ice Model Biases

LSS (0.25 K) LC2 (0.40 K) HR6 (-0.48 K)LP2 (0.08 K) HR6 (0.31 K) Entire Domain: LC1 (-0.09 K)

- Variability across the frontal system
- Column, plate, rosette ice habits compare well in precipitation
- Ice water path: Better metric to study uncertainties, biases, etc.?

IWP (Z_e-IWC relationships)

Simulated T_B Uncertainty

Global Results - DDA Models Only

Cloud/Precip Category	Label	N _{obs}	Description
All clouds	AC	9043	All clouds, no precipitation.
Cold clouds	CC	2494	Cold clouds only (< 0 C), no precipitation.
Warm clouds	WC	2894	Warm clouds only $(> 0 C)$, no precipitation.
All precipitation	AP	5153	All precipitation occurrences.
Stratiform (mid-lat)	SML	1911	Mid-latitude (lat. $> 30^{\circ} $) stratiform precipitation.
Stratiform (low FL)	SLFL	916	Mid-latitude stratiform, freezing level < 1 km.
Stratiform (high FL)	SHFL	583	Mid-latitude stratifor m, freezing level > 1 km.
Stratiform (brightband)	SBB	412	Mid-latitude stratiform with obvious brightband.
Low-topped convection	LTC	1148	Shallow, higher latitude (lat. $> 45^{\circ} $) convection.

Ice Model Assessment: Stratiform

- Z_{int} dependence
- Distinct 157 GHz biases at high Z_{int}
- Unrealistic for elevated IWP?