Near-Surface Sea Temperature (NSST) and Satellite Data Assimilation

Xu Li, John Derber

Background

Today's Presentation:

- 1. The changes from SST to NSST in NWP: Analysis, Forecasting and Cycling
- 2. The impact evaluation with cycling experiments

What is NSST?

NSST is a **T-Profile** just below the sea surface.

Here, only the vertical thermal structure due to diurnal thermocline layer warming and thermal skin layer cooling is resolved

Z

$$T(z) = F[T_{f}, T_{w}(0), z_{w}, T_{c}(0), \delta_{c}]$$

Why switch SST (T_0) to NSST T(z) in NWP?

- NSST-Profile is closely related to High Frequency Variability (HFV, minutes to hours time scale) in SST.
 - The introduction of NSST into the NWP system enables to resolve the HFV in SST analysis and forecasting directly.
 - The resolved HFV of SST helps to resolve the HFV in atmospheric analysis and weather forecasting.
- NSST-Profile contains additional information essential:
 - To treat the related sea temperature observations (insitu and satellite) depth dependent
 - To provide wavelength (or depth) dependent lower thermal boundary condition to radiance simulation model such as CRTM

SST (T_0) and **NWP**

(For example, GFS with external daily SST analysis)

 T_0 : SST

- X : Atmospheric State Vector
- R_{ch} : Radiance for Channel *ch*

C : Observation operator (relate control variables to the radiance: e.g. CRTM)

 $\partial R_{ch} / \partial X$: Jacobi (the sensitivity of the radiance to atmospheric analysis variable)

 $\partial R_{ch} / \partial T_0$: Jacobi (the sensitivity of the radiance to SST, not used here)

NSST*T*(*z*) and **NWP**: Interaction

C : Observation operator (relate T-Profile to the radiance) $\partial R_{ch} / \partial T_z$: Jacobi (the sensitivity of the radiance to T-Profile)

NSST model

- NSSTM = DTM + TSM
- DTM (Diurnal Thermocline Model)
 - NCEP DTM
 - More physical processes included than COARE V3.0 (Fairall et al, 1996)
- TSM (Thermal Skin-layer Model)
 COARE V3.0 sub-layer cooling (Fairall et al, 1996)
- Observation operator and its Jacobi
 - Required in direct assimilation

SST diurnal warming: May 12, 2006

15

Impacts evaluation: Cycling Runs

Exps	T_r	SST In FCST	T(z) In ANAL	$\partial T_z / \partial T_r$
pru12w	SST ^{op}	SST ^{op}	SST ^{op}	N/A
pru12d	SST ^{op}	$SST^{op} + T_w'(0)$	$SST^{op} + T_w'(z) - T_c'(z)$	N/A
pru12c	SST ^{op}	$SST^{op} + T_w'(0)$	SST ^{op}	N/A
pru12n	T_r^{an}	$T_r^{an} + T_w^{'}(0)$	$T_r^{an} + T_w'(z) - T_c'(z)$	$\partial T_{ir} / \partial T_r, \ \partial T_{mw} / \partial T_r$

 $T(z) = T_r(z_w) + T'_w(z) - T'_c(z)$

The operational version of NCEP GFS (T382) is used to do the experiments for the period of November 12, 2008 to December 31, 2008. The analysis and 16-day forecasting are performed 4 times a day.

RMS: 20081201 20081231. HGT, G2/TRO, Daily Mean

Forecast Day

RMS: 20081201_20081231. HGT, G2/NHX, Daily Mean

RMS: 20081201 20081231. HGT, G2/SHX, Daily Mean

COR: 20081201 20081231. HGT, G2/TRO, Daily Mean

Bias & Bias difference for Dec. 2008 (31 x 4 samples): HGT, Tropics

Verification of 16-day forecasting. Based on 31 x 4 samples in Dec. 2008. 850 hPa Wind, Tropics

RMS: 20081201_20081231. HGT, G2/TRO, Daily Mean

Forecast Day

RMS: 20081201_20081231. HGT, G2/NHX, Daily Mean

RMS: 20081201_20081231. HGT, G2/SHX, Daily Mean

AC*100 (pru12d - pru12e) : 200812 (31 x 4). HGT, P250, G2/SHX.

CONUS Precip Skill Scores, f36-f60, 01dec2008-31dec2008

Conclusions

- The impact of the NSSTM on NCEP GFS predictive skill is significant in tropics. Neutral to positive for extratropics
- The inclusion of the NSSTM in atmospheric analysis does improve the GFS performance, the relatively significant signal can be seen in Southern Hemisphere.
- NSSTM should improve longer period prediction.
- Detail analysis is necessary with the diagnostic file of GSI in Tr analysis experiment (pru12n) to find out which satellite instruments leads to colder SST analysis product.
- A channel dependent radiance simulation and the corresponding Jacobi calculation in CRTM