

Global Modeling and Assimilation Office Goddard Space Flight Center National Aeronautics and Space Administration

The Simulation of Doppler Wind Lidar Observations in Preparation for ESA's ADM-Aeolus Mission

Will McCarty

NASA/Goddard Space Flight Center Global Modeling and Assimilation Office

R. Errico, R. Yang, M. McGill, S. Palm, R. Gelaro, M. Rienecker

8th Workshop on Satellite Data Assimilation

Quick Introduction to Doppler Wind Lidar

- The Doppler Wind Lidar Concept
 - Lidar backscatter is Doppler shifted by a scattering agent
 - Improved accuracy in height assignment
- Spaceborne Doppler Wind Lidar
 - Global, 3D measurements of wind
 - ESA ADM-Aeolus (late 2011)
 - single horizontal wind component
 - NASA 3D-Winds (NRC Decadal Survey recommendation)
 - Full horizontal wind

Global Modeling and Assimilation Office

ADM-Aeolus Pre-Assimilation Data Flow Chart

- Vertical profiles in clear sky (Rayleigh)
- Higher quality measurements in presence of scattering agent (Mie)
- Orbit Characteristics
 - 408 km, Dawn-dusk. Sun-synchronous
- Viewing Geometry/Sampling
 - 90° off-track (away from sun)
 - One 50 km profile every 200 km
- Availability
 - Data will be available in Near-Realtime

Global Modeling and Assimilation Office

ADM-Aeolus Pre-Assimilation Data Flow Chart

- Processing & Distribution
 - L1B distributed in NRT by ESA
 - L2B processing part of ECMWF integrated forecast system (IFS)
 - Unavailable to other operational systems (timeliness)
 - All major DA centers will have to run L2B processing independently
 - Software expected be made readily available (D. Tan, ECMWF)
 - Potential external L2B processing in near-realtime by EUMETSAT (A. Stoffelen, KNMI)

Global Modeling and Assimilation Office

ADM-Aeolus Pre-Launch Preparedness

- Realistic Proxy Data No spaceborne heritage, must simulate observations
- Utilize OSSE framework
 - Joint OSSE Nature Run (ECMWF, T511)
 - Existing observing system developed in-house at GMAO (R. Errico & R. Yang)
 - conventional and remotely-sensed observations
 - Simulate ADM observations
 - Lidar Performance Analysis Simulator (LIPAS), via KNMI (G.-J. Marseille & A. Stoffelen)
 - Need proper sampling (spatial & vertical), yield, and error characteristics
 - Not intended to sell ADM (already sold)

Global Modeling and Assimilation Office Goddard Space Flight Center National Aeronautics and Space Administration

Clouds in the Joint OSSE Nature Run

- Importance of clouds
 - The top of a cloud can act as a scattering agent
 - Optically thick clouds limit wind retrievals

Placement of clouds

- Realistic vertical placement of clouds
- NR underestimates cloud amount
 - ~12% globally
 - Related to measurement yield

Global Modeling and Assimilation Office

Clouds in the Joint OSSE Nature Run

- Cloud Fraction for all cloud tops
 - NR lacks clouds
- Too few clouds, too many observations

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

Global Modeling and Assimilation Office

Aerosols in the Joint OSSE Nature Run

- Like clouds, aerosols act as both scattering and extinction agents
- Placement
 - Not available in the NR
 - Traditionally taken from a climatological background
 - Inconsistent with atmospheric state
 - Dynamically-consistent aerosol fields
 - GOCART aerosol transport model embedded in the GEOS-5 model
 - Aerosol fields forced by the meteorology of the Nature Run

Global Modeling and Assimilation Office

Simulated DWL Observations from ADM

- Rayleigh Channel observation errors from ADM
 - NR-Simulated
 - Not burst-mode

Global Modeling and Assimilation Office

Assimilation of Simulated ADM Measurements

- Initial cycling studies have been performed
 - Two weeks
 - Not entirely spun-up
- Blue on top, DWL
 reducing O-F RMS
- Red on top, DWL increasing O-F RMS

Global Modeling and Assimilation Office

Assimilation of Simulated ADM Measurements

- Wind RMS reduced throughout vertical
 - Simulated ADM observations measure to 30 km
- Largest changes in T RMS seen in stratosphere
 - Fewer observations
- Overall q_v RMS impact dominated by mid & lower tropospheric signal

Global Modeling and Assimilation Office

Ongoing and Future Efforts

- NR cloud verification manuscript (in progress)
- Aerosol verification (in progress)
- NR cloud tuning (future)
- ADM simulation (first version complete)
 - Existing DA infrastructure show mechanics seem correct
 - Deficiencies in simulated ADM measurements known (too few clouds, no added representativeness error, etc.)
- DA studies (ongoing)
 - Full observation system development (first version complete, R. Errico & R. Yang)
 - Refine DA methodologies for ADM, (QC and error handling, in progress)
 - Investigate forecast impact and observation sensitivity studies

