

CRTM Multiple Transmittance Models

Yong Chen^{1,2}, Yong Han^{1,3}, Tong Zhu^{1,2}, and Fuzhong Weng³

Contact info: Yong.Chen@noaa.gov

¹Joint Center for Satellite Data Assimilation, Camp Springs, MD 20746 ²CIRA, Colorado State University, Fort Collins, CO 80523 ³NOAA/NESDIS Center for Satellite Applications and Research, Camp Springs, MD 20746

A new transmittance model ODPS (Optical Depth in Pressure Space) have been developed and implemented into CRTM, which will be included in CRTM version 2. The ODPS model can have up to six user input variable absorbers (H₂O, CO₂, O₃, N₂O, CO and CH₄), while the operational Compact-OPTRAN (reference as ODAS, Optical Depth in Absorber Space) in current CRTM only allows two variable absorbers (H₂O and O₃). We also implement the multiple algorithms framework in CRTM to handle the different transmittance algorithms, including the ODAS, ODPS, SSMIS-Zeeman and SARTA, which can be used with the same user interface. Transmittance algorithm is dynamically selected by using the algorithm ID, which is stored in the sensordependent transmittance coefficient file.

Abstract

ODPS Features

- Several important features are included in the ODPS model:
 (1) the CO₂ now is a user input variable absorber, it can be a profile or single value (same value at all height);
 (2) for hyper-spectral sensor, the input variable absorbers can be same as broadband IR, all other gases are treated as dry (fixed) gases;
- (3) using Compact-OPTRAN concept to treat water line transmittance if the fitting error for this components meets prescribed conditions compared to ODPS standard water line training error, in this way the water vapor Jacobian smoothness will be remain;
- (4) water vapor continua transmittance is treated separately;(5) The ODPS also considers the Earth curvature effect by adding altitude dependence to the zenith angle profiles.

The ODPS transmittance training errors by fitting line-byline model (LBLRTM_v11.3) is much smaller compared with Compact-OPTRAN, especially for hyper-spectral infrared sensors.

Efficiency comparison between CHTM ODPS and Compact-OPTRAN

Satelite Sensor	Forward Model		K-Matrix Model	
	ODPS .	Compact-OPTRAN	ODPS	Compact-OPTRAN
avter3_m18'	0m10.12s	0m22.02s	0m49.438	0m57.58s
his4_n18	0m37.40s	2#13.32s	2m41.37s	4m11.99s
amoua_n16"	0m23.696	1m29.70s	1#37.38s	2m50.44s
's-qotem_18ical	0m38.70s	2m01.69s	2m44.84s	4m30.27s
iasi82_metop-at	100.415	3m33.24s	4m4.27s	6m25.05s
lasi80 metop-at	0m83.00s	3m12.81s	3m42.78s	5m51.30s

Satelite Sensor	Tangent Linear Model		Adjoint Model	
	ODPS	Compact-OPTRAN	COPS	Compact-OPTRAN
avter0_m18	0m39.67s	0m53.79s	0m42.158	0m55.14s
hirp4_m18	1m28.294	3m39.11s	1m34.40s	3m42.18t
amoua_n18	1m3.11s	2m34.89s	1m8.77s	2m05.654
ias81_metop-a	1m7.50s	3m43.84s	1m14,445	3m45.89s
lasi82_metop-a	1m45.91s	5m16.16s	1m54.56s	Sm18.10s
ias/80 metop-a	1m28.316	4m45.37s	1m38.17s	4m48.63s

All sensors were run with UMBC 48 profiles at nadir, and full channels. ¹ repeat 1000 times: ⁴ repeat 10 times.

Concluding Remarks and Future Work

The new transmittance model ODPS have been developed and implemented into CRTM. Compared with the current operational Compact-OPTRAN, ODPS is more accurate for forward calculation and more efficient. ODPS is using Compact-OPTRAN concept to treat water line transmittance and keep the water vapor Jacobian smoothness. Our future work will focus on the ODPS bias characteristics in GSI systems and the impacts testing on GSI and GFS systems.