Recent developments of the BUMP software

Benjamin Ménétrier - IRIT, Toulouse (JCSDA funding) 18th JCSDA Technical Review Meeting and Science Workshop June 8, 2021

Training process

Affordable training

Outline

BUMP overview

Training process

Affordable training

What is B?

In the variational framework, the background error covariance matrix B describes the uncertainty of the background x^b :

$$\mathcal{J}(\mathbf{x}) = \underbrace{\left(\mathbf{x} - \mathbf{x}^{b}\right)^{\mathrm{T}} \mathbf{B}^{-1} \left(\mathbf{x} - \mathbf{x}^{b}\right)}_{\mathcal{J}_{b}(\mathbf{x})} + \underbrace{\left(\mathbf{y}^{o} - \mathcal{H}(\mathbf{x})\right)^{\mathrm{T}} \mathbf{R}^{-1} \left(\mathbf{y}^{o} - \mathcal{H}(\mathbf{x})\right)}_{\mathcal{J}_{o}(\mathbf{x})}$$

In the equivalent BLUE framework, B is the last operator applied to define the analysis increment:

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{B}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R} \right)^{-1} \left(\mathbf{y}^{o} - \mathcal{H} \left(\mathbf{x}^{b} \right) \right)$$

B contains complex multivariate 3D structures (potentially 4D for the 4DEnVar algorithm).

Hybrid background error covariance matrix:

$$B = \underbrace{\beta^{e2} L \circ \widetilde{B}}_{\text{"ensemble" term}} + \underbrace{\beta^{s2} B^{s}}_{\text{"static" term}}$$

where:

BUMP overview

- \bullet \widetilde{B} is sampled from an ensemble of forecasts
- L is the localization matrix
- o denotes a Schur product (element-by-element)
- β^e and β^s are scalar coefficients
- ullet B^s is a "static" covariance matrix, usually modeled as:

$$\mathsf{B}^{s} = \mathsf{K} \mathbf{\Sigma} \mathsf{C} \mathbf{\Sigma} \mathsf{K}^{\mathrm{T}}$$

where:

- K is a balance operator
- \bullet Σ is the diagonal matrix of standard-deviations
- C is a correlation operator

- **BUMP** stands for "Background error on an Unstructured Mesh Package".
- BUMP is one of the background error covariance libraries of SABER (System Agnostic Background Error Representation), a component of the JEDI project.
- BUMP works with any model grid and is able to take complex boundaries into account (important for ocean or land models).
- Written in modern Fortran 90 (\sim 25.000 lines), the code can be easily called through Fortran and C++ interfaces.
- Interfaces with BUMP are implemented for most of JEDI models, via OOPS.

BUMP functionalities

BUMP provides tools based on ensembles of forecasts to estimate:

- Horizontal and vertical localization length-scales of L and hybrid weights β^e and β^s , estimated locally using the theory of Ménétrier and Auligne (2015) [HDIAG].
- Vertical statistical regressions of the balance operator K estimated locally [VBAL].
- Standard-deviations Σ objectively filtered with the method of Ménétrier et al. (2015a,b) [VAR].
- Horizontal and vertical correlation length-scales of C estimated locally and simultaneously [HDIAG], or alternatively Local Correlation Tensors [LCT] for anisotropic functions.

A grid smoother is required to apply L and C in a variational framework: **BUMP** implements the **NICAS** method (Normalized Interpolated Convolution from an Adaptive Subgrid) [NICAS].

Training process

Affordable training

Static covariance training

Training process

Affordable training

For FV3 at resolution C384:

- ullet 1 member: \sim 11 Gb
- ullet 1 cycle of 80 members: \sim 880 Gb
- ullet 25 cycles of 80 members: \sim 22 Tb

Difficult to load simulatneously on disk, not to say in memory...

BUMP solution: split the work

Easy to do for variance [VAR] and correlation [HDIAG / LCT], required theoretical developments for vertical regressions [VBAL].

BUMP solution: load members sequentially

Members are loaded sequentially to reduce the memory footprint. No slow down, no precision loss.

Training process

Affordable training

Conclusions

In the recent months, BUMP has been upgraded to improve the B components training:

- work split in cycle-based precomputations, with a final averaging step,
- reduced memory footprint, reading ensemble members sequentially.

Tests are underway on Orion for FV3-JEDI at full resolution (C384). Once the new branch is validated, it will be merged into develop and available for all users. A working example of a full static B training workflow will be provided.

Thanks for your attention!