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ad Map (2002 - 2010)

By 2010, a numerical weather prediction community will be
empowered to effectively assimilate increasing amounts of
advanced satellite observations
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al of Cloud Liquid Water
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ments for Better RT Models

es of satellite observations
ce assimilation (less dependent on product

validation)
— Unified satellite data assimilation infrastructure

® Advanced satellite instruments

— Interferometer sounding technology with a few thousand
channels

— Polarimetric from visible to microwave

— Uses of channels sensitive to surface

— Inclusion of spectral response functions/field of views
®* NWP specific drivers

— Speed, accuracy and storage

— Radiances/Jacobian

— Coupling with forecast modeling
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MSU Weighting Function
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munity Radiative Transter Model

_________________________________________________________________________________________________

Atmospheric State Vectors l Surface State Vectors

Atmospheric
Spectroscopy Model

Aerosol and Cloud Surface Emissivity,

Optical Model

Reflectivity Models

Forward Radiative
Transfer Schemes

A

Receiver and Antenna
Transfer Functions

Jacobian Schemes



munity Contributions

. Radiative transfer science
Spectral Sampling (OSS) Method
Microwave Emissivity Model (MEM) in deserts

= NOAAJ/ETL - Fully polarmetric surface models and microwave radiative transfer
model

= UCLA - Delta 4 stream vector radiative transfer model

= UMBC - aerosol scattering

= UWisc — Successive Order of Iteration

= CIRA/CU -SHDOMPPDA

= Langley/Hampton Univ — principal component radiative transfer
= Princeton Univ — snow emissivity model improvement

= NESDIS/ORA - Snow, sea ice, microwave land emissivity models, vector discrete
ordinate radiative transfer (VDISORT), ocean polarimetric, scattering models for
all wavelengths

® Core team (ORA/EMC): Smooth transition from research to operation
= Maintenance of CRTM (OPTRAN/OSS coeff., Emissivity upgrade)
= CRTM interface
= Benchmark tests for model selection
= |ntegration of new science into CRTM




CRTM Framework

roblem is split into various components (e.g. gaseous
tc). Each component defines its own structure definition
and application modules to facilitate independent development.

Minimize or eliminate potential software conflicts and redundancies.

Components developed by different groups can “simply” be dropped into the
framework.

Faster implementation of new science and algorithms

At the simplest level, it’s a collection of structure definitions, interface
definitions, and stub routines.

There are User and Developer interfaces, Shared Data interface, Test Software,
Utilities/Feedback



CRTM flowchart

OSS OD lookup table

Cloud optical parameter
lookup tables

Aerosol optical parameter
database

Surface emissivity and
reflectivity database

yes

{R_ch,;,R_ch,, ..., R_ch.}



files with 7 observation angles

ion & Memory Efficiency

TRAN-V7

Jacobian+Forward

OPTRAN-comp

Forward, Jacobian+Forward

OSS

Jacobian+Forward

AIRS 7m20s, 22m36s 10m33s, 35m1l12 3m10s
HIRS 4s, 13s 5s, 17s Os
Memory resource required (Megabytes)
OPTRAN-V7 OPTRAN-comp 0SS
single, double double precision Single precision
AIRS 33, 66 5 97
HIRS 0.26, 0.5 0.04 4




ent Forward CRTM
Interface

ror_Status = CRTM _Forward( Atmosphere, &
Surface, &

d In structures. Geometrylnfo, &

) Channellnfo, &
Itional “arguments” can be RTSolution )
added as required to the requisite
structures.

®* No impact on calling routine.

Allowable dimensionality
L = number of channels; M = number of profiles

INPUTS OUTPUTS
Atmosphere Surface Geometrylnfo RTSolution
Scalar Scalar Scalar L

M M M LxM




nt K-Matrix CRTM
Interface

Error_Status = CRTM_K Matrix( Atmosphere, &

. Surface, &
eflnltlo_ns for both RTSolution K, &
K-matrix structures.

Geometrylnfo, &
) ChannelInfo, &
® Channel dependencies are handled
via the structure array dimensions.

Atmosphere K, &
Surface K, &
RTSolution )

Allowable dimensionality
L = number of channels; M = number of profiles

INPUTS OUTPUTS
Atmosphere | RTSolution_ | GeometrylInf '1U”U°E”CIC_ RTSolution
Surface K v Surface—K
Scalar L Scalar L L
M LxM M LxM LxM




TL/AD test results for AtmAbsorption

T
A A0t D4 e v

Filerame: hired_n17.CRTM_Atmabsorption TLADMtest.ne
Platferm: hicz3_n17
Senscr hirsd_n17
L M,
Profile: 6
Wariable: d{Dptical Depth)/di{Layer water vapor}

Profile in




R = J.¢(V)R(V)dvzéwiR(vi); v, e Av

®  Wavenumber v; (nodes) and weights w,
are determined by fitting “exact”
calculations (from line-by-line model) for
globally representative set of atmospheres
(training set)

®  Monochromatic RT (using look-up tables
of absorption coefficients for relevant
species stored at the selected nodes)

— Maximum brightness temperature
error with current LUT < 0.05K in
infrared and <~0.01K in microwave

Provided by Y. Han (NESDIS) and J. Moncet (AER)

eous Absorption Model
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ponent Radiative Transfer

NAST-1 Radiance
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Tropical {200K)

sitivity to Cirrus Clouds
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ission/Scattering Model

whose

compared with the radiation
wavelength.

® Small capillary waves, which
are riding on top of the large-
scale waves, and whose RMS

height is small compared with  Merhodology: two-scale model
radiation wavelength. e Gravity wave is simulated

® Sea foam, which arises as a as an ensemble of tilted facets
mixture of air and water at the  each acting as an infinitely large
wind roughened ocean surface, specular surface
and which leads to a general - ,capjjlary wave is approximated by

Increase In the surface _
emissivity. small perturbation theory




Stokes Component U (K)

4 T N R = L S R NS |

Variation of U at 37 GHz with relative azimuth angle for wind
speeds of 4m/s, 6m/s, 10m/s, and 14m/s. SST = 300 K.

Model vs Observations

Measurement

Relative Azimuth Angle (degree)

U (unit: K)

Variation of U at 37 GHz with relative azimuth angle for wind
speeds of 5m/s, 10m/s, and 15m/s. SST = 300 K.
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Stokes Component V (K)

Variation of V at 37 GHz with relative azimuth angle for wind
speeds of 4m/s, 6m/s, 10m/s, and 14m/s. SST = 300 K.

14m/s

Relative Azimuth Angle (degree)

V (unit: K)

-0.2 4

-0.4

-0.6 4

-0.8

0.8
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cattering Model




Scattering Model

® Stem population

® Underlying soil moisture
content

Methodology: geometric optics is applied
because the leaf size is typically larger

than wavelength
d - leaf thickness
H - canopy height
LAI - leaf area index
m, - dry matter content
B — leaf orientation angle
0 — incident angle of EM wave

40 50 60 70 80 90 100

Frequency (GHz)
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Snow V-POL Emissivity Spectra
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ssivity Model

Subsurface ¢,

e Dielectric constant within snow Is perturbed and
a function of volume fraction of scattering particles
 Reflection occurs at interface
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issivity Spectra
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Emissivity (2, 2,)
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Produce Third Stokes
nent at 10.7 GHz
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alytic Jacobian

arameters (e.g. surface temperature, sol
written as (Weng and Liu, 2003, JAS):

) o +6B(TS)£+ R
= ox, Ox

YK (N
Jacobian to any atmospheric parameters is just a linear sum
of the Jacobians to temperature, optical thickness, and phase

function/matrix, for example, Jacobian to water vapor,

— OR, F =
Es, (7;)+ 3 OfGXP(—TL/ﬂo)E}j (1)

N xS xS

Eexp[AL (rp—7-0]e};

Oy() _ 0 () |, 0wy ANy(at) __on| OMy() _a OLy(a0) (2)
0q, 0q, Ot 0q, Ow, : 0t 7, 0wy

and Jacobian to cloud water,

oLy (p) _ 07y OLy(p) | 0y i) _ 7y —x[™qy Oly(p) | @™ qy Oly(w) 3
an an (31'1 an 8(01 wy 52’1 w T, awl ( )
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bians at 0.67 micron
n for NPOESS/APS
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Jacobian to single scattering albedo

(Weng and Liu, 2003, JAS)
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ecipitation Scattering

Pressure (hPa)
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Vertical cross section of temperature anomalies at 06:00 UTC 09/12/2003. Left panel: west-east cross section
along 22==N, and right panel: south-north cross section alona 56=W for Hurricane Isabel
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Vertical cross section of temperature anomalies at 06:00 UTC 09/12/2003. Left panel: west-east cross section
along 22=N, and right panel: south-north cross section alona 56=W for Hurricane Isabel
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Summary

ity Radiavtive Transfer Model (CRTM) is
eing developed through the JCSDA satellite data
assimilation program

The CRTM includes vital components required for
direct assimilations of current and future operational
satellite radiances and will allow for uses of satellite
data under all weather conditions in NWP models

The CRTM is a framework with all interfaces to link
university research and is accelerating the transition of
new radiative transfer science into US operational NWP
data assimilation systems (NASA and DoD are
planning to use the same CRTM)



tstanding Issues

nosing the hydrometeors associated with sub-grid

set to validate CRTM under cloudy conditions

Consistent assumptions in cloud microphysics from visible, infrared and
microwave wavelengths used in CRTM with NWP models

Limited access to operational forecast models outputs

Surface scattering/emission related to dense medium materials

Inclusion of spatial inhomogeneity of clouds and precipitation in CRTM
Infrared emissivity over deserts

Sea ice emissivity modeling at microwave frequencies



up Slides from

4 Workshop on Satellite
Data Assimilation: Radiative

Transfer, Clouds & Precip Session

Co-chairs: Fuzhong Weng (NESDIS/ORA)
Lars Peter Riishojgaard (GSFC/GMAO)



T Components into
— Science
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® Delivery of a Beta version of CRTM in June 05



-Integrating Community RT Components into
JCSDA CRTM - User Interface

Contributors: Y. Han, P. van Delst, Q. Liu

Type Name

Description

Summary of Accomplishments

e All data contained in structures

» Additional “arguments” can be added as required to the
requisite structures.

*  Visualization tools developed
e CRTM tested on several instruments (AMSU, AIRS, HIRS)

Future Plans

Test each CRTM component (gaseous absorption, scattering,
etc) in each model (Forward, K-matrix, etc) for consistency,
as well as the end-to-end test.

SpcCoeff_type

Channel frequencies, polarisation,
Planck function coefficients, etc.

TauCoeff_type

Coefficient data used in the
AtmAbsorption functions.

AerosolCoeff_type

Coefficient data used in the
AerosolScatter functions.

ScatterCoeff_type

Coefficient data used in the
CloudScatter functions.

File

Salect. St uarisble

+w Level pressure




and Sid

Future Plans

*  Work with NOAA to finalize the OSS integration into
the CRTM

*  Work with NOAA to complete OPTRAN comparison
and extend to scattering atmospheres (other: complex
surface emissivities / solar regime)

* Continue multi-channel selection development in parallel

» Export OSS generation
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ty Model Upgrade

Snow V-POL Emissivity Spectra

Snow Emissivity

0.4

1.00

Emissivity

« Investigate large emissivity biases over regions as 00

highlighted by other Pls

*  Fix the ocean emissivity model bugs in NCEP at lower
frequencies

30 60 90
Frequency (GHz)

e Grass_after_Snow — B— Wet Snow

120 150

e P OWOET SHOW

——{i— Shallow Snow —{l— Medium Snow = ®— Deep Snow

e == Thin Crust Snow e === Thick Crust Snow e BOtto M Crust Snow (A)

e Bottom Crust Snow (B) Crust Snow e RS_SNOW (A)
RS_Snow (B) RS_Snow(C) =—@== RS_Snow(D)

Sea Ice V-POL Emissivity Spectra

0.95 -1
0.90 A1
0.85 1
0.80 1
0.75 1
0.70 1
Future Plans 0.65 |

o] 20 40 60 80

100 120 140 160

- New Ice + Snow
——a— First Year Ice
—a&— Fast Ice

— A&— RS _Ice (F)

Frequency (GHz)
—e—RS_Ice (A) —a— RS_Ice (B)

Bare New Ice Broken Ice
——e—— Conposite Pack Ice —#——RS_Ice (O)
i RS_Ice (D) RS Ice (B
—ji}— Grease Ice



Future Plans

»  Monitor bias statistics over longer time period,: fully
include scattering (need more complete GFS input data),
biases in IR including scattering

»  Precipitation assimilation: include cloud diagnostics to
generate precipitation rate 1DVAR loop to optimize
moisture profiles versus direct assimilation
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ear Radiative Transfer (DOTLRT)
rowave Radiance Assimilation

Hurricane Bonnie 26 August 1998 0830 UTC 166 GHz
e

Tb and Analytic Jacobians
CRTM / DOTLRT

Hurricane Bonnie 26 August 1998, UBGDUTC 33° N, Frequency = 166 GHz
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Future: - Finish up the Stoke vector development;
Interface DOTLRT solver with CRTM Cloud

Scatter module for generic stream angles;
implement analytic Jacobians in K-matrix; .y
Test/validate CRTM v
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Future Plans M
® Continue the development of D4S/A for polarization (Q) ol
component;
200 | | | | | | | |
® Develop a method to compute radiance derivatives with 10 750 800 B0 %00 80 000 100 100 1180

Wavenumber (cm )

respect to cloud and surface parameters;

® Analyze AIRS cloudy spectra and compare to cirrus
parameterization/OPTRAN computations; and

® Construct a module RTSolution in CRTM.



e Emissivity Error
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EXPADS: 10 Day Composite

C. Combs, M C1DOE_EMIS_23R_SFC Mean 2003-264 00
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Future Plans

Transition the AMSU-B Antenna Pattern Correction module to
operations

Continue emissivity cross-correlation studies and collaborations
re: MEM improvements

Perform intercomparisons with NRL JCSDA emissivity work

From JCSDA needs, determine the future operational role of the 150 N 100 150
dynamic global 1DVAR emissivity retrieval system
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Emissivity Difference



Future Plans

Testing out two options for 3D model dust fields.

Investigate Aerosol effect on Observed minus
Forecast Brightness temperatures

Include Sulfate Aerosol

1eric aerosols in CRTM




icient All-Weather (Cloudy and Clear) Observational Operator
for Satellite Radiance Data Assimilation

Contributors:M. Sengupta, T. Vukicevic, T.H. Vonder(
Haar (CIRA/CSU) and K.F. Evans (CU) i

- Verification of the estimate in 4D

Suiiiaty of Accomplshments # L\ cloud study against independent ob
®  Components for gaseous absorption (CRTM), ice e
and water cloud optical properties (Anomalous R Cloud Radar I"Bﬂecﬂvify

Diffraction) and radiative transfer computation
(SHDOMPPDA) have been built/adapted.

®*  The observational operator is currently being -
upgraded from our previous research version with Tee cloud
the components which are newly developed

® SHDOMPPA was tested in 4dvar for assimilating
GOES sounder data and results are very optimistic

Future Plans

Complete Observational operator for operation with any
NWP model output. Improve efficiency and provide tools
for running on single processor and in parallel.

Build scattering tables from Mie theory for water droplets
and Yang et al. parameterizations for ice crystals.

Long term plans: Investigate accuracy of single
calculations using CRTM in visible satellite bands by
comparing with multiple calculations for cloudy cases
using correlated-k distributions for gaseous absorption.
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