# Spectral Habit Ice Prediction System (SHIPS) Initial Test Simulations of Orographic Precipitation

Gregory J. Tripoli and Tempei Hashino

# **Requirements of Microphysics Prediction**

- Size Distribution
  - nucleation
  - history
- Phase (s)
  - function of particle history
- Shape
  - liquid hydrometeors: size implies shape
  - ice: particle history results in:
    - shape
    - internal structure
    - density
- Chemical and Phase Content
  - history of hydrometeor implies:
    - acidity
    - ion content
    - chemical content

### Habit Variation



Fig. 2-37: Temperature and humidity conditions for the growth of natural snow crystals of various types. (From Magono and Lee, 1966; by courtesy of J. Fac. Sci., Hokkaido University.)

#### **Conventional Bulk Microphysics Parameterization**

#### Kessler-Lin/Orville Paradigm (1967)

- categories of hydrometers
- each category has one unimodal size distribution.
- density and shape are fixed for each category.
- No history of growth
- Conversions between categories based on local conditions and tendencies



# **Bin Model Paradigm**



- Berry (1967)
  - converts the continuous distribution to a discrete one and solve at those grid points.
  - values of the function between grid points are interpolated using Lagrange polynomials
- Gelbard and Seinfeld (1978)
  - uses finite element method
- Bleck (1970)
  - one moment method (mean mass in a bin is fixed).
  - Liquid water content is conserved, but not number concentration or other moments

### Spectral Habit Ice Prediction System (SHIPS) (1)



### Spectral Habit Ice Prediction System (SHIPS) (2)

Diagnose the habit and type



### Spectral Habit Ice Prediction System (SHIPS) (3)

Simulation of microphysical processes using information on habit and type.

- vapor deposition process
- aggregation process
- riming process
- ice nucleation
- breakup process
- melting-shedding

Repair routine

Mix (advect) the hydrometeors in 3D Eulerian model



# **Application to Eulerian Model**

- Predict 2-3 dimensional variable
  (1-10 parameters, # bins, # categories)
- Parameter must be an extensive variable
  - Mass => mixing ratio
  - Axis length => total length/mass of air
  - Concentration => number/mass of air
  - Charge => charge / mass of air

## **Predict Axis Length or Axis Mass?**

- Mass => requires statistical model to determine implied axis length
- Length => requires statistical model to find axis width

# **Application to Cloud Resolving Model**

### Predictive Variables

- Dynamics core (u, v, w, p).....4
- Thermodynamics  $(\theta, q_T)$ .....2
- Bulk Microphysics (7 ice, 1 liquid).....8

# **Application to Cloud Resolving Model**

### Predictive Variables

- Dynamics core (u, v, w, p)......4

- SHIPS Microphysics (50 ice, 10 liquid)...60
- Spectral Liquid Prediction System......10

| – Total | 77 | 7 |
|---------|----|---|
|         |    | , |

# **Reason for Optimism**

- Large number of microphysics variables over very small percentage of domain
- Use gather/scatter technique and solve microphysics in a distributed CPU-cash contained algorithm
  - 100 % load balanced
  - limited memory references

#### 2D Orographic Snow Storm Simulation – IMPROVE II (13-14 Dec 2001)



From IMPROVE II website

Upper cold-front passage and orographic forcing

#### UW-NMS setup

- 1,000m horizontal, 100m vertical (up to 750m) resolution
- time-step is 10 second.

#### Vapor Deposition Process

Mass Distribution Hypothesis Chen and Lamb (1994a)

$$\frac{dc}{da} = \frac{\alpha_c(T)}{\alpha_a(T)} \frac{\nabla \rho_c}{\nabla \rho_a}$$

• assume spheroid shape for ice crystal to solve  $\nabla^2$ 

• can be used for varying ambient temperature.

Reflect the environment the ice crystal is going through.



$$\nabla^2 \rho_v = 0$$



#### Vapor Deposition Model

#### Water-saturation at 700mb



#### Predicted Habit in 2D Model of IMPROVE II with Vapor Deposition Only



(b) Supersaturation Relative to Ice (%) and Temperature (C)



#### Aggregation Process (1)

• Propose the collection efficiency model:

$$E_{c} = E_{collision} \cdot E_{coal} = 1 \cdot E_{coal}$$
$$E_{coal} = \min(1.0, E_{int} + E_{stick})$$
• Interlocking mechanism:

- Interlocking mechanism:  $E_{int}$ • Sticking mechanism :  $E_{stick}$
- Interlocking mechanism: use the approach of Chen and Lamb (1994b).

$$E_{\rm int} = 1 - \frac{V_1 \rho_1 + V_2 \rho_2}{V_1 \rho_i + V_2 \rho_i}$$

• Sticking mechanism: Hallgren & Hosler (1960).

$$E_{stick} = \exp(0.38(T - 273.15))$$

• The axis ratio and maximum dimension of aggregates are diagnosed by using empirical formula by Barthazy and Schefold (2004) and Mitchell, Zhang, and Pitter (1989).

#### Aggregation Process (2)



• Interlocking mechanism:

• Sticking mechanism:



From Pruppacher and Klett (1997)

Fig. 14-18: Experimentally determined efficiency with which snow crystals and ice spheres collect micron sized ice crystals, as a function of temperature of collector ice particle. (-.-) Latham and Saunders (1970),  $a = 1000 \ \mu\text{m}$ , spheres; (---) Rogers (1974b),  $a = 500 \ \mu\text{m}$ , snowflake; (---) Hallgren & Hosler (1960),  $a = 85 \ \mu\text{m}$  ice sphere; (×) Hosler & Hallgren (1960),  $a = 180 \ \mu\text{m}$  (1),  $a = 63.5 \ \mu\text{m}$  (2), ice spheres.



#### **Riming Processes**

• Uses the collision efficiency calculated for hexagonal ice plates, broadbranch crystals, and columnar ice crystals by Wang and Ji (2000).

- Large drops collecting small crystals: Lew and Pruppacher (1983) and Lew et al. (1985)
- For the collision between graupel (or hailstones) and cloud drops Pinsky et al. (2001) have calculated the efficiency which depends on the ambient pressure.
- The shorter axis is increased (Chen and Lamb, 1994b).
- Rime density is calculated according to impact speed and surface temperature of ice (Hymsifield and Pflaum, 1985)
- Once it is considered as graupel or hail, the aspect ratio is assumed to be 1. Then the diameter can be calculated from mass and volume.

# **Observations**



### 2 Hour Model Simulation (All Ice Processes)



## **Diagnosed Habit**

(a) Concentration against mass bin



(b) Supersaturation Relative to Ice (%) and Temperature (C)





(b) Supersaturation Relative to Ice (%) and Temperature (C)



#### Are Maximum Dimension & Density Correct?



Woods et al. Figure 11

(a) Maximum Dimension (cm) and axis ratio c/a



x 10

# **Radiative Transfer**

Kwo-Sen Kuo and Eric A. Smith are developing new RTE model that adapts to details inherent in NMS modelÕ new microphysics parameterization.

#### This involves solving three key problems:

**PROBLEM 1:** Adapting to hydrometeors of variable density and phase.

**SOLUTION 1:** Single scatter model assumes *fully arbitrary layering of dielectric properties* -- thus allowing for multiple interfaces of complex refractive index. [operable]

**PROBLEM 2:** Adapting to hydrometeors of variable shape.

**SOLUTION 2:** Single scatter model uses *consummate solution* for several (7) collections of interacting spherical particles (thus avoiding far-field assumption) to form building block (kernel) shapes -- then used to generate arbitrary hydrometeor shapes. Similar to but faster than Discrete Dipole Method (DDM) for representing optical properties of complex shaped particles -- but yet to be shown to represent characteristic phase functions and volume attenuation coefficients. [in progress]

**PROBLEM 3:** Adapting to 3-dimensional heterogeneous mix of hydrometeors of arbitrary orientation which multiple scatters imposed radiation field across, solar, infrared, and microwave spectrums.

**SOLUTION 3:** Multiple scattering model uses *Picard iteration to produce fully analytic radiative transfer solution in 3-dimensional framework.* [operable]

# Conclusions

- Qualitatively SHIPS/SLiPS appears to reproduce reasonable habit and size distributions.
- More investigation on optimal parameter to represent axis growth history in Eulerian framework is needed.
- Initial computational efficiency promising, but further development is necessary.
- Radiative transfer model is being developed which will seize upon responding to new details in microphysical properties.

# Future Research

- Determination of optimal number of parameters.
- More case studies to validate SHIPS.
- Introduce hollow crystal + rosette bullets crystal for cirrus clouds, and capped columns.
- Verify maximum dimension and density prediction with empirical relationship and then with satellite observations through forward calculations.
- 3D orographic simulation.
- Sensitivity analysis:
  - fixed CCN concentration -- does it need to be predicted instead of diagnosed?
  - collision efficiency (demonstration of habit and type effect)?
  - cloud seeding experiment?
- Mass component approach.
- RTE experiments to demonstrate efficacy of consummate solution scheme.