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Overview

• Next generation retrieval algorithms

• Validation geared at precipitation processes
- Detailed microphysics in Sea of Japan

• Observations geared at precipitation processes
- Cumulus Congestus in the tropics
- Cloud/Aerosol interaction?
- Climate scale relation between microphysics 

and TPW

Satellite Observations of Clouds and Precipitation
Overview 2: Precipitation Observations



The evolution of the Goddard Profiling (GPROF) algorithm

GPROF is a Bayesian algorithm developed primarily by C. Kummerow and 
Bill Olson over ocean and R. Ferraro over land but internal code has pieces
written by much broader community [e.g. P. Bauer (melting particles), G. 
Petty (emission indices),  Tom Wilheit (Freezing level), Ye Hong (C/S), etc.]

GPROF is evolving with new satellites but is kept backwards compatible.  
Currently running GPROF-2004:

SSM/I - Version 7  (in house)
TMI - Version 6    (GSFC DAAC)
AMSR_E - Version B05   (NSIDC)

GPROF-2006 is currently under development to significantly improve a-
priori data bases and make algorithm more parametric in preparation for 
GPM
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The need for evolving GPROF

GPROF 2004 uses a relatively small set of pre-computed cloud model 
simulations for its a-priori database.  Its representativeness or ability to 
capture regime dependent changes has always been questioned.  GPROF 
error model cannot correctly capture uncertainty due to these database 
issues.

GPROF 2004 uses empirical screening routines developed for various sensors 
in its rain/no rain discrimination.  A more statistical approach is preferable 
to better represent sensor strengths and weaknesses w/o tuning results to a 
reference product.  

GPROF 2004 uses a semi-empirical method for assigning convective/ 
stratiform properties to precipitating pixels.  A more statistical approach is  
preferable to better represent c/s and latent heating profiles.



Database refinement: Concept
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Database refinement: Flowchart



Initial CRM database

• Cloud-Resolving Model (CRM) database
– A priori database for the current GPROF algorithm.
– Using Goddard Cumulus Ensemble Model (GCE) and UW-

Nonhydrostatic Modeling System.
– About 30 snapshots from different simulations

• Tropical convection & squall line
• Hurricane
• Mid Atlantic cold/warm frontal rain
• Extra-tropical cyclone
• …

– 20,000+ pixels for each snapshot



Raining parameters

• DSD assumption
– The initial assumption is  same as  adopted by the PR operational (2A25) algorithm.
– Allow D0 (median volume diameter) to change +/- 0.3 and +/- 0.6 mm from initial 

value when adjusting DSD.
– Number of D0 assumptions will be increased in the future and changed to ratio of 

original value.
• Ice density assumption

– The initial assumption is  same as  adopted by the PR operational (2A25) algorithm.
– Allow snow/grauple density to 

change +/- 20% and +/- 40% from 
initial value when adjusting DSD.



Raining parameters

• PR retrieval
– Find the best-fit CRM profile in 

the radar reflectivity (Z) space.

• PIA adjustment
– Parallel to the 2A25 algorithm.
– Path-integrated attenuation (PIA)

is used when reliable.
– The best solution is sought under 

the constraint of PIA by varying 
the DSD model.



Identifying rain-free TMI FOVs

– Find PR pixels located within a 
given TMI 19-GHz FOV.

– If none of these PR pixels 
contains a rainfall signal, the TMI 
footprint is defined as
"rain free".



Non raining parameters

– Retrieve non raining parameters (water vapor, 
surface wind, cloud water, and SST) for rain-
free TMI footprints.

– The Remote Sensing Systems datasets are 
currently used but will be replaced by an 
online algorithm in the future.

– WV and CLW are also derived for raining PR 
pixels from PR-matched CRM profiles.

– The complete fields of the non-raining 
parameters are obtained by spatial 
interpolation.



Tb computations

• Compute brightness temperatures
– The 3-D structure of all the raining and nonraining parameters are 

now available.
– Microwave brightness temperature is computed for comparison 

with TMI measurements.
– A slant TMI sight line intersecting 

neighboring columns is taken into 
account.

– Beam convolution is applied with 
a 2-D Gaussian beam pattern.
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Tb computations

– PR-retrieved precipitation profiles exhibit bias in the computed Tb
with the initial assumptions.



Updating assumptions

• Discrepancy in brightness temperatures
– A larger (smaller) D0 results in a colder (warmer) Tb in the emission channels 

through the underestimation (overestimation) of rain water.
– A higher (lower) ice-particle density (or fluffiness) results in a colder 

(warmer) Tb in the scattering channels.
• Adjustment of DSD and ice-density models

– Modify D0 and ρice (relative factor multiplied to the original ice-density 
model)  and iterate the retrieval.  

– D0 derived from the radar itself via PIA will be set back to the radar derived 
value. Flow diagram



Updating assumptions

– DSD and ice-density models are adjusted so that the bias in Tb is 
minimized.
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– Rain/No rain discrimination must be replaced by statistical probability 
(determined from PR in a-priori database).  Otherwise end up with 
physical inconsistency or different rain areas dcepending upon sensor.  

– Convective/stratiform will be organized in similar manner.  Texture 
and polarization difference will be used to assign probability of each.

Organizing the new database
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• Rain probability



Physical Validation

-GPM Validation efforts

-Wakasa Bay experiment

• How do we know that D0 and ρice are the 
correct parameters to adjust? 



Statistical
(All Sites)

Identify Signatures
(Relate causes for site dependent 
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Insight into Precipitation 
Processes
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A GPM Validation Concept

Ask

Understand

Observe

Apply

Agreement? Y

N

Done

Physical
(Supersites)

Questions
(Formulated 

by PMM)



Wakasa Bay Experiments

• Remote sensing retrievals often have more unknowns than observations
– Requires assumptions to solve: ice - density, particle shape, PSD

• In Wakasa Bay - we simply measured everything we could.
– Ku, Ka and W band radars (3 total)
– MIR (89 - 340 GHz)
– PSR (10.7 - 89 GHz) 

• Optimal estimation retrieval - incorporates multiple observations 
– Can use radiometer, radar and in-situ
– Reduces number of assumptions - reduces uncertainty in retrieval
– Enforces physical consistency through radiative transfer model

• Retrieving ice cloud PSD
– Uses 3 radars and in-situ cloud probe data to find ice particle characteristics -

shape/density
– Uses 3 radars and 11 radiometer frequencies to retrieve ice particle PSD 

(normalized gamma distribution)





In-situ observations of ice DSD



Ice Cloud Retrieval
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F(x) vs. Observations
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What are we learning from detailed  comparisons between products? 

-The role of SST in determining Cloud/latent heat
relations in the tropics

-The correlation of TPW with relative errors between
TRMM PR and TMI rain estimates

- Aerosol impact on precipitation processes?

Process Studies 



• Individual cloud areas identified with VIRS IR Tb < 280 K for Jan. 1998 - Feb. 
2000

• Convective cores within each cloud are defined by a contiguous area of 10 
mm/hr or greater PR rain rate

• Single-core cloud size is normalized by the rainfall amount and regressed 
against the underlying NCEP Reynolds SST (similar to Lindzen et al. 2001) as 
a proxy for the change in precipitation efficiency with SST

• Deep convection showed little sensitivity to the underlying SST

• Single-core warm clouds show a marked response to SST



Trend suggests that the increase in precipitation is at the expense of cloud  area.  This 
has implications for not only total tropical rainfall and the radiation budget, but also for 
the lower- and middle-tropospheric moistening and the pre-conditioning period for deep 
convection.

Implies that 
precipitation 
efficiency of warm 
rain systems is 
sensitive to the 
underlying SST and 
agrees with similar 
findings by Lau et. al 
(2003) of a 5-10% 
increase in rainfall 
efficiency per degree 
SST

Rainfall efficiency



PR/TMI Rainfall Differences
(5-year mean PR-2A25 - TMI-2A12 from 3G68)



Rainfall Detection vs. Intensity
Breaking it into 3 Problems

• Rainfall Detection
1. TMI Only (RRTMI > 0, RRPR = 0)
2. PR Only (RRPR > 0, RRTMI = 0)

• Rainfall Intensity
3. Differences in rain amount (RRTMI > 0, RRPR > 0)



Rainfall Detection Errors



Rainfall Detection Error
February 1, 2000



Role of Aerosols?
Impact on Drop Size



Rainfall Detection Errors
Impact on TMI/PR Differences



PR/TMI Rainfall Differences
as a Function of Column Water Vapor



Rainfall Bias Removal
Based on Column Water Vapor



PR/TMI Rainfall Differences
Impact of Column Water Vapor Bias Adjustment



Summary

Better rainfall products are being developed for window channel 
radiometers in preparation for GPM 

Microwave sounders not at same level of maturity

Validation efforts being designed for GPM can have impact on data 
assimilation if designed with assimilation in mind

Process studies are an emerging discipline.  Will need closer ties with 
modeling community to bear fruit.  

Applications for GPM is considering the merger of all rainfall products 
into a single framework.  Something to think about …..
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