

Radiative Transfer Modeling Support for the CRTM

Vivienne Payne, Jean-Luc Moncet Atmospheric and Environmental Research (AER)

Other AER contributors to the work presented here include: Eli Mlawer, Matt Alvarado, Karen Cady-Pereira, Tom Connor, Ned Snell, Gennady Uymin, Alan Lipton, Thomas Nehrkorn and Dave Berthiaume

Motivation

- Goals of this work
 - Improve the accuracy of fast radiative transfer models used in satellite radiance assimilation
 - Enable greater use of the information available in satellite radiances
 - Increase positive impact of satellite data on the forecast

• Line-by-line RT models

- Accuracy of calculations of molecular absorption limited mainly by uncertainties in spectroscopy
 - Line parameters, lineshape, continua
- Fast RT models
 - Differences from line-by-line models can be made negligible
- Assimilation/inversion of radiances
 - Speed limited by both forward model calculation and inversion algebra
 - Desirable to reduce dimension of the observation vector
 - Channel sub-setting
 - Principal-component-based compression
 - Node-based compression

AER radiative transfer codes and Atmospheric and AER radiative transfer codes and Atmospheric and AER radiative transfer codes and Atmospheric and AER radiative transfer codes and

LBLRTM: Latest release

• LBLRTM v12.0

- Publicly available at http://rtweb.aer.com
 - Released March 2011
 - Supplied with:
 - MT_CKD 2.5.2 continuum
 - aer_v_3.0 line parameter database
 - Based on HITRAN 2008
 - Substitutions made where validation against high quality, spectrally-resolved measurements indicate that better parameters are available
 - H_2O and O_2 in the MW, H_2O and CO_2 in the IR
 - Contains line coupling coefficients for CO_2 , O_2 and CH_4 (new!)
 - Updated non-LTE capabilities

Atmospheric and Environmental Research, Inc.

CO2: Temperature information affects the modeling of all other trace gases

(Input profiles supplied by L. Strow and S. Hannon).

H₂O region: Example IASI case

Environmental Research, Inc. ECMWF profiles and "clear-sky" IASI radiances supplied by Marco Matricardi

 H_2O : Specification of "true" atmospheric state is particularly difficult Perform retrieval, then assess consistency in the spectral residuals

aer

Atmospheric and

Future work: Assess impact of spectroscopy updates for a range of conditions (~100 cases)

Local Thermodynamic Equilibrium (LTE):

- Behavior dictated by kinetic temperature
- Population of energy levels follows Boltzmann distribution
- Non-LTE:
 - "Solar pumping" populates energy levels more quickly than collisions can thermally redistribute the energy
 - Different vibrational temperature profiles for different vibrational states
 - Affects daytime radiances, high altitude (>45 km) channels
 - Strong effect for CO₂ channels in 2200-2400 cm⁻¹ region
 - Can lead to errors of up to ~15 K (AIRS resolution) if not accounted for

- Initial non-LTE package delivered to JCSDA in April 2010
 - Vib. Temp. profiles supplied by M. Lopez-Puertas (Granada)
 - Yong Han's presentation
- Updated capability in LBLRTM v12.0:
 - Allows different vibrational temperature profiles for different isotopes
 - Impact: ~0.2 K differences for strongest band

Optimal Spectral Sampling (OSS) development status

• CRTM-OSS

- Implementation of infrared forward model complete
 - Same speed performance as AER standalone OSS model
- Tangent linear and adjoint coding complete
 - In testing phase
- Next step: include microwave and multiple sensor modeling capability

Generalized training

- Finalizing training method
- Integrate Principal Components (PC) modeling capability
- Assimilation/retrieval execution time limited by inversion algebra
 - focusing on reducing dimension of observation vector
- PC offers best radiance compression performance but suffers from well-known limitations which limit its application to assimilation/retrieval
- Alternative node-based representation provides factor 10-20 speed up in retrieval applications and avoids mixing of spectral information
 - Keeps same attributes as channel-space wrt
 - dynamic channel selection (for e.g. clear-sky retrieval down to cloud top)
 - bias removal
 - preserving information relative to minor absorbers.

Example of OSS performance (IASI)

- IASI: ~8000 channels
- Model accuracy (0.05K)
- Number of variable species (from 2 to 20 in current RT model)
- Training set:
 - random perturbations d(p) added to profiles to remove vertical correlation
 - secular trends for e.g. CO₂ added
- Nadir viewing geometry (currently applies from 0 to ~70° to include geostationary sensors – scan angle binning could further reduce # nodes)

- 11 -

Node-based representation:

Application to clear retrieval down to cloud top

Approach:

- Project full cloudy radiance spectrum onto nodes
- Perform dynamic node selection
 - Using e.g. Jacobians and 1DVAR cloud top retrieval (Pavelin et al., 2008) or other technique
 - In this experiment, perfect knowledge of cloud top is used
 - Nodes have sharper weighting functions than channels - practical benefits not assessed
- Trim obs error covariance matrix (node space) and perform retrieval with reduced set of nodes

- 12 -

Example of 1D-VAR retrieval results

aer

Atmospheric and

Environmental Research, Inc.

• OSS is ideally suited for the GPU because of the many independent calculations that can be done in Parallel.

Radiance Accuracy Results So Far Speedup Results So Far (100 profiles)

average difference min difference	5.42092E-09 0			CPU	GPU NVidia 480GTX	Speedup
max difference average percent difference min percent difference	7.63E-06 4.5E-08%		Optical Depths	30.6s	0.31s	98.71X
max percent difference	1.8E-05%		Radiances	20.4s	0.20s	102.00X

- Improvements to spectroscopy continue to improve consistency in spectral residuals
- LBLRTM v12.0 now available at <u>http://rtweb.aer.com</u>
- Continued progress in CRTM-OSS development
 Finalization of training method is underway
- Contact:
 - vpayne@aer.com
 - jmoncet@aer.com

Back up

Impact on temperature profile

Perspective 2: retrieval to achieve consistency

CO2 nu2 Temperature Averaging Kernel Atmospheric and Environmental Research, Inc. LBL v12.0, v10.7_mod similar

aer

CO₂ nu3 Temperature Averaging Kernel Atmospheric and Environmental Research, Inc. LBL v12.0, v10.7_mod similar

aer

Generalized training: Methodology trade

- Two approaches considered:
- Method 1: Reduce initial number of nodes by clustering below minimum required to model the spectral domain and add back nodes on a channel per channel basis until all channels meet accuracy threshold.
- Method 2: Apply clustering to reduce initial number of nodes to N > Nmin. Apply extended (vector) search for final selection.
- Look for fastest implementation and capability of providing continuous trade off between minimizing Nav (local training) and Ntot (global training).

Profile data sources

1		CANNE with using added, some as should add the initial set
1	H ₂ U	ECMWF with noise added, same as standard training set
2	O_3	ECMWF with noise added; same as standard training set
3	CO_2	$GM1 \pm 10^{\circ}$ lat, ± 1 month match, plus 2002-2012 secular frend, noise added on primary
		and secondary levels and interpolated
4	CH₄	GMI ±10°lat, ±1 month match, plus 2002-2012 secular trend, noise added on primary
		and secondary levels and interpolated
5	N₂O	GMI ±10°lat, ±1 month match, noise added on primary and secondary levels and
		interpolated
6	CO	GMI ±10°lat, ±1 month match, noise added on primary and secondary levels and
		interpolated
7	F11	GMI ±10°lat, ±1 month match, noise added on primary and secondary levels and
		interpolated
8	F12	single profile from Matricardi w/ ±10% random scaling
9	CCI	single profile from Matricardi w/ ±10% random scaling
10	HNO ₃	single profile from Matricardi scaled to get 0.4 DU, then randomly varied by
		ln(a')=ln(a)+ln(5) (varied by factor of 5)
11	50,	single US Standard Atmosphere profile scaled to get 0.1 DU then randomly scaled (on
	2	a log scale) to get random range of 0.09 to 900 DU. The scale factor is a two-piece
		hyperbolas of log(n) with the maximum factor D (and zero vertical derivative) at 235
		mb tapering to D/1000 at the top and D/100 at the bottom. The rate of tapering was
		arbitrary
12	005	constant with height at 500 ppty, from surface up to 20 km on then linearly decrease
16	000	to 0, at 50 km; the suggested dynamic range (randomized) is ±10% (ner S. Tiemkes)
13	CE	dynamic range (randomized) of 50 to 70 ppty, constant profile (per S. Tjenkes)
14		Derived from profiles over Australian fines and super care fields provided by Gueroana
17	1 1 1 3	Guerova University of Wollencone
15	ИСООЦ	ATMOS profile
15		ATMOS profile GEOS CHEM profile provided by Dylan Millet Henyand University
10		Demodica (MTDAS teem) meen mafile and 1 STD variability. Ean the training ways
17	C2H2	kemeulos [MITAS leam], mean protile and 1-510 variability. For the training we use
10		
18	C ₂ H ₄	A IMUS protile
19	HCN	Remealos [MIPAS team]: mean profile and 1-510 variability. For the training we use
		N-SID
20	CHCIF ₂	Remedios [M1PAS team]: mean profile and 1-STD variability. For the training we use
	(F22)	N-STD

4 fixed gases (source AFGL standard atmospheres): O₂, NO, NO₂, N₂

Number of variable trace species can be decided at run time. Nonselected species are assigned user-supplied profile and merged with fixed gases (no retraining required)

**Newly added variable species for Aura-TES

