

Assimilation into MOM4/ Coupled Data Assimilation with GMAO ODAS-2

Christian Keppenne, Michele Rienecker, Jossy Jacob & Robin Kovach

Global Modeling and Assimilation Office (GMAO) NASA/Goddard Space Flight Center

Outline

- · ODAS-2 vs. ODAS-1
- Background covariance modeling issues
- Assimilation into coupled model
- Analysis validation

2008 JCSDA Meeting June 10, 2008

ODAS-1

- Production ocean data assimilation system as of 6/10/2008
- Used in the GMAO coupled forecast initialization
- Developed and tuned for Poseidon V4 OGCM run at 538 \times 572 \times L27 ((1/3° \times 5/8° \times L27)
- Not model independent
 - Univariate Optimal Interpolation of in situ T and S including synthetic S data
 - Ensemble Kalman Filter assimilates T, S & SSH updating T, S, u & v
 - Online bias correction used when assimilating SSH
- \cdot OMF calculation with first guess at analysis time

- "Classical" distance-based error covariance localization
- 3-D covariance localization
- rescaling of innovations to account for obs./analysis time discrepancy

ODAS-2 vs. ODAS-1

ODAS-2

- Fully model independent system built on ESMF framework
- \cdot Versatile: new observation types or model state variables can be added without recompiling
- Initial testing with Poseidon V5 model
- · Currently used with MOM4 either coupled or uncoupled to GEOS-5 AGCM
 - OI of T & S profiles
 - "Error"-EOF based MvOI ("steady state ensemble kalman filter")
 - Online bias correction
 - Ensemble Kalman Filter coming next...
- \cdot OMF calculation with first guess at observation time

• Flow dependent error covariance localization in (x, y, z, t, neutral density) space

Adaptive error covariance localization

1. Traditional approach (as in ODAS-1)

 $C(\delta x, \delta y, \delta z, \delta t)$ is an approximately Gaussian compactly supported correlation function

$$P_c = P \circ C$$

- 2. Tried hierarchical ensemble filter (Anderson 2007) but
- Extremely expensive!
- Observations must be processed serially ($\alpha_{kl} P_{kl}$ is not a covariance)

$$\alpha = \frac{1}{m-1} \left(\frac{\left(\sum_{i=1}^{m} \beta_{i}\right)^{2}}{\sum_{i=1}^{m} \beta_{i}^{2}} - 1 \right)$$

- 3. Bishop's (2007) flow adaptive moderation of spurious covariances but
- Some long-range (presumably) spurious features are amplified.
- Assimilation performance (OMFA statistics) worse than case 1

$$\boldsymbol{c}_{ij}^{m} = \left(\frac{\boldsymbol{P}_{ij}}{\sqrt{\boldsymbol{P}_{ii}\boldsymbol{P}_{jj}}}\right)^{m}$$

$$G = diag(C^{m}), \qquad C^{mq} = G^{-1/2}(C^{m})^{q}G^{-1/2}$$

- 4. Back to case 1 with with localization in (x, y, z, t, neutral density) space
- Respects flow-dependent gradients such as thermocline and fronts
- Assimilation performance better than case 1

- The T, increment follows the thermocline
- The T & S increments follow stratification/fronts

Ocean analysis into CGCM while atmospheric analysis is "replayed"

- 1. (03Z) T_k: Ocean analysis
- 2. $T_k \rightarrow T_{k+0.5}$: Run AGCM over T_k ocean
- 3. (06Z) $T_{k+0.5}$: Read atm. analysis and calculate atm. increment (analysis first guess)
- 4. $T_{k+0.5} \rightarrow T_k$: Rewind AGCM (OGCM still at T_k)
- 5. $T_k \rightarrow T_{k+1}$: Run CGCM while incrementally applying atmospheric and ocean increments (IAU)
- 6. (09Z) T_{k+1} : Ocean analysis

In practice ocean analysis takes place at T_k , T_{k+n} , T_{k+2n} ,... Hence ocean IAU is applied over $T_k \rightarrow T_{k+n}$, $T_{k+n} \rightarrow T_{k+2n}$,... 2005-2006 runs

- \cdot ODAS-1 production analysis (TSR2): UOI of T and S data
- ODAS-2 UOI (x, y, z, t): covariance localization in (x, y, z, t) space
- ODAS-2 UOI (x, y, z, t,ϕ): covariance localization in (x, y, z, t, neutral density) space
- ODAS-2 MvOI: as ODAS-2 UOI (x, y, z, t, ϕ) but background covariances from 32 "error EOFs"

Data

- In situ T profiles: TAO, XBT, PIRATA, ARGO
- In situ S profiles: ARGO
- Synthetic salinity observations corresponding to TAO, XBT & PIRATA T data

\cdot (x, y, z, t, ϕ) localization beneficial in thermocline • MvOI has more favorable T OMF statistics than UOI

0.15

Salinity comparison with independent CTD observations: MVOI (x, y, z, t, ϕ)

6⁰N

1600

2000

8⁰N

10°N 12°N

155°W SALINITY (PSS-78)

June 12 – 20, 2005

LATITUDE

4°S 2°S 0° 2°N 4°N

800

400

500

1200

RANGE (KM)

155W Salinity Jun 2005

RANGE (KM) 110W Salinity Apr 2005

1200

. 1600 2000

800

110°W SALINITY (PSS-78)

April 10 - 19, 2005

LATITUDE

4°S 2°S 0° 2°N 4°N 6°N 8°N 10°N 12°N

400

100

a 200

Ш

띮 300 문

400

36.00

35.60

35.20

34.80

110W Salinity Apr 2005

165E Salinity Jul 2005

2S EQ

MvOI (x, y, z, t,)

2N 4N

6N

300

400

500

85

6S

4S

35.60

35.20

- 34.80

- 34.40

- 34.00

33.60