

Near Sea Surface Temperatures (NSST) Analysis in NCEP GFS

Xu Li, John Derber EMC/NCEP

Outline

- What is NSST and why NSST analysis?
- How does NSST analysis in NCEP GFS work?
- Main characteristics of the new scheme
- Progress
- Experiments & Results
- Plan

Near Sea Surface Temperatures (NSST)

 $T_s = T(z = 0)$: cannot be observed directly (SST)

 $T_{sl}(z) = T(0 < z \le z_c)$: can be observed directly by satellites: IR & MW (sub-layer T-profile)

 $T_{wl}(z) = T(0 < z \le z_r)$: can be observed directly by buoys & ships (warm layer T-profile)

 $T_r = T(z = z_r)$: can be observed directly by buoys & ships (reference T)

Diurnal warming profile : $T_w(z)$ (0 ~ 4.0K at z=0), $z_r \sim O(5m)$

Sub-layer cooling profile : $T_c'(z)$ (0 ~ 0.8K at z=0), $z_c \sim O(1mm)$

NSST Profile : $T(z) = T_r + T_w'(z) - T_c'(z)$

NSST Analysis in NCEP GFS: Components and Interaction

NSST Analysis in NCEP GFS: Main Characteristics

• NSST is treated as depth dependent

Advantages

- More realistic thermal boundary condition to atmospheric model and radiative transfer model
- Short time scale (hours) air-sea interaction included in weather forecasting
- Diurnal variation in NSST resolved

Work

- NSST model and its coupling with GFS_AM
- Observation operator and its Jacobi for the new analysis variable and NSST data
- Determination of the observation depth for NSST data (satellite, buoys & ships)

NSST is analyzed within GSI

Advantages

- 6-hourly analysis
- Use more types of data easily
 - Better data coverage
- Assimilate the raw observations directly
 - Simpler observation error
- NSST analyzed with atmospheric analysis variables in a single cost function
 - Better consistency

Work

- Incorporation of NSST analysis in GSI
- The use of more data: AVHRR, insitu NSST and more

Progress

- A 6-hourly NSST analysis scheme in NCEP GFS has been developed
 - Boundary condition (SST) for GFS_AM
 - Boundary condition (sub-layer T-profile) for CRTM
- A series of experiments on this new scheme have been done and the results are encouraging
 - Impact of NSST model on CRTM and therefore atmospheric analysis (reported last year)
 - Tr analysis with GSI
 - Impact of NSST model on GFS_AM (7-day forecasting)
 - Coupled assimilation (parallel run) in preparation

Experiments of Tr analysis in GSI

	Observation Data	Analysis variable	Lower thermal boundary condition to CRTM
CTL	Used in operation + AVHRR GAC + NSST of buoys &ships	SST	SST^{bg}
OCN	Used in operation + AVHRR GAC + NSST of buoys &ships	T_r	IR: $T_r^{bg} + T_w^{'}(z_{ir}) - T_c^{'}(z_{ir})$ MW: $T_r^{bg} + T_w^{'}(z_{mw})$

 $T_w^{'}(z), T_c^{'}(z)$: Provided by uncoupled NSST model (forced by available NCEP 3-hourly operational fluxes)

Experiment period: 09/01/2007 ~ 09/07/2007

Simulation of ocean diurnal warming and sub-layer cooling. 09Z, 02/03/2006 (3-hour warming integration with 3-hour mean fluxes, from 06Z, 02/03/2006)

Sensitivities of T(z) to T_r

$$\begin{split} \frac{\partial T_z}{\partial T_r} &= \frac{1}{1 - W_0 + C_0} + \frac{W_d - C_d}{1 - W_0 + C_0} z & 0 \le z \le Z_c \\ \frac{\partial T_z}{\partial T_r} &= \frac{1 + C_0}{1 - W_0 + C_0} + \frac{W_d}{1 - W_0 + C_0} z & Z_c \le Z \le Z_r \end{split}$$

$$W_0 = \frac{2}{\rho_o c_p z_r} \left[\left(\frac{\partial I_{sw}}{\partial z_r} - \frac{I_h}{z_r} \right) \frac{\partial z_r}{\partial T_s} - \frac{\partial I_Q}{\partial T_s} \right]$$

$$W_d = \frac{2}{\rho_o c_p z_r^2} \left[\left(\frac{2I_h}{z_r} - \frac{\partial I_{sw}}{\partial z_r} \right) \frac{\partial z_r}{\partial T_s} + \frac{\partial I_Q}{\partial T_s} \right]$$

$$C_0 = \frac{1}{\kappa} \left[z_c \frac{\partial Q}{\partial T_s} + (Q - S_c - \omega_c R_{ns} A_c z_c) \frac{\partial z_c}{\partial T_s} \right]$$

$$C_d = \frac{1}{\kappa} \left(\omega_c R_{ns} A_c \frac{\partial z_c}{\partial T_s} - \frac{\partial Q}{\partial T_s} \right)$$

Sensitivities of T(z) to T_r

Simulation of sensitivities of temperatures to Tr, d(Tz)/d(Tr). 06Z, 02/06/2006. 6-hour Warming intergration from 00Z 02/06/2006.

Diurnal variability of analysis variable (Tr)

Reference Temperature (Tr) Analysis Increment. 09/04/2007. Exp.

Diurnal variability of analysis variable (SST)

Reference Temperature (Tr) Analysis Increment. 09/04/2007. Ctl.

Experiments of NSST model on GFS 7-day forecasting.

	Atmospheric	
	Initial Conditions	SST
GFS	GFS analysis (00Z, 06Z, 12Z, 18Z)	SST^{op}
CTL	GDAS analysis (00Z, 06Z, 12Z, 18Z)	$SST^{op} + T_{w}'(0) - T_{c}'(0)$
OCN	GDAS analysis (00Z, 06Z, 12Z, 18Z)	$SST^{op} + T_{w}'(0) - T_{c}'(0)$

 SST^{op} : NCEP operational SST analysis

 $T_w^{'}, T_c^{'}$: Provided by coupled model (GFS_AM + NSST model)

The experiments (CTL and OCN) have been done for 3 months: July 2007. January 2008 and September 2007.

Diurnal warming & sub-layer cooling in coupled GFS(GFS_AM + NSST) forecasting. LON: 9.0 \sim 10.0; LAT: -5.0 \sim -4.0 OCN:—OCN3h6h:—Starting from 00Z, 01/25/2008.

Ts & Fluxes in GFS forcasting: Control and Coupled (GFS + NSST). From 00Z, 01/25/2008. LON: $9.0 \sim 10.0$; LAT: $-5.0 \sim -4.0$. Sampled 3-hourly.

Plan

- Extend the 7-day forecasting to 14-day
- Parallel run
 - Feedback between analysis and forecasting
- Operational in 2008
- Coupling of GFS_AM, NSST model and OGCM?