

Land Surface Thermal-IR Emissivity Modeling

Shunlin Liang, <u>Kaicun Wang</u>, John Townshend University of Maryland

JCSDA 6th Workshop on Satellite Data Assimilation June 10-11, 2008

Introduction (1)

Land surface thermal infrared emissivity E is a critical variable in surface longwave radiation budget

However, it has been treated very approximately by various operational models

Introduction (2)

- ***** Noah LSM sets $\mathcal{E} = 1$ for all land surfaces except for snow
- **\Rightarrow** ECMWF model sets \mathcal{E} as a constant.
- ✤ Radiative Transfer for TOVS sets $\varepsilon = 0.98$ for all land surfaces, and $\varepsilon = 0.99$ for sea ice.
- Actually, emissivity have a very large spatial variation. It may be as low as 0.7-0.8, which will results in 10% error in surface longwave radiation budget (Jin and Liang, J. Climate, 2006).

MODIS monthly emissivity (June 2002, version 5)

Our overall objectives

- Develop a high-resolution emissivity database from multiple satellite sensors (e.g., MODIS, ASTER) using a data fusion approach.
- Establish the empirical relations between emissivity and various land surface biogeophysical variables.
- Assess, calibrate and improve existing radiative transfer emissivity models.

Accuracy of MODIS emissivity

- It is the first step to evaluate the accuracy of the current available emissivity retrievals before data fusion.
- However, *in-situ* land surface emissivity measurements are not available.
- Land surface longwave radiation including information on land surface temperature (LST) and emissivity can be used to evaluate satellite emissivity retrievals.

- ★ Relationship longwave radiation and emissivity can be written as (Wang et al., JGR, 2005, Liang, 2004): $T_{s} = \left[\frac{L_{\uparrow} (1 \varepsilon_{b}) \cdot L_{\downarrow}}{\varepsilon_{b} \cdot \sigma} \right]^{\frac{1}{4}} \quad L_{\uparrow} = \varepsilon_{b} \cdot \sigma \cdot T_{s}^{4} + (1 \varepsilon_{b}) \cdot L_{\downarrow}$
- ***** Broad band emissivity ε_b can be estimate from MODIS narrowband retrievals in thermal-IR region (Wang et al., J.G. R., 2005): $\varepsilon_b = 0.2122 \cdot \varepsilon_{29} + 0.3859 \cdot \varepsilon_{31} + 0.4029 \cdot \varepsilon_{32}$

Method

- First, estimate broadband emissivity from satellite narrowband retrievals (MODIS day/night LST algorithm).
- Second, estimate LST from longave radiation measurements.
- Third, compare LST from ground-based measurements and satellite retrievals from independent algorithm (splitwindow algorithm).
- Studies have shown that there is no bias in the MODIS LST from split-window algorithm. We can infer: If the ground-based LST is larger, it seems that the emissivity is underestimated, and vice versa.

Validation MODIS version 4 LST at FLUXNET sites (Wang et al., RSE, 2008)

Validation of L_{\uparrow} from MODIS version 4 emissivity at SURFRAD sites

Validation of L_{\uparrow} from MODIS version 4 emissivity at SURFRAD sites (Wang et al., TGRS, 2008, in press)

Validation of Emissivity at Tibetan Plateau

(Wang et al., Int. J. Remote Sens., 2007)

Validation of version 4 emissivity at Tibetan Plateau (Wang et al., Int. J. Remote Sens., 2007)

MODIS emissivity improvement n 5, Wang et al., Int. J. Remote Sens., 2007; Wan, RSE, 2008)

Emissivities in bands 29, 31 and 32 retrieved from Terra MODIS data in 2004121-184 over Gaize

Comparison of MODIS version 4 and 5 broadband emissivity at SURFRAD sites (Wang and Liang, RSE, 2008, under review)

Comparison of MODIS version 4 and 5 broadband emissivity at SURFRAD sites (Wang and Liang, RSE, 2008, under review)

Comparison of MODIS version 4 and 5 broadband emissivity at SURFRAD sites (Wang and Liang, RSE, 2008, under review)

Relationship longwave radiation and emissivity can be written as (Wang et al., J.G. R., 2005, Liang, 2004):

$$T_{s} = \left[\frac{L_{\uparrow} - (1 - \varepsilon_{b}) \cdot L_{\downarrow}}{\varepsilon_{b} \cdot \sigma}\right]^{\frac{1}{4}} \qquad L_{\uparrow} = \varepsilon_{b} \cdot \sigma \cdot T_{s}^{4} + (1 - \varepsilon_{b}) \cdot L_{\downarrow}$$

Stroad band emissivity ε_b can be estimate from MODIS narrowband retrievals in thermal-IR region (Wang et al., J.G.R., 2005):

 $\varepsilon_b = 0.2122 \cdot \varepsilon_{29} + 0.3859 \cdot \varepsilon_{31} + 0.4029 \cdot \varepsilon_{32}$

Comparison of LST calculated from MODIS version 5 emissivity and LST from split-window algorithm at SURFRAD sites (Wang and Liang, RSE., 2008, under review)

Averaged bias over the six sites is about 0.2 K

Accuracy of ASTER emissivity

Comparison of MODIS and ASTER broadband emissivity at SURFRAD sites (Wang and Liang, 2008, under review)

Comparison of MODIS and ASTER broadband emissivity at SURFRAD sites (Wang and Liang, 2008, under review)

Comparison of MODIS and ASTER broadband emissivity at SURFRAD sites (Wang and Liang, 2008, under review)

Summary

Longwave radiation is helpful to evaluate satellite emissivity products.

- MODIS version 5 emissivity corrects the underestimations of MODIS version 4 for vegetated surfaces.
- ASTER product tends to underestimate emissivity, especially for summer time.

Accomplishments in first year

- Downloading satellite emissivity products from multiple sensors, such as MODIS, ASTER, SEVIRI, AIRS, etc.
- Developing data fusion algorithms to integrate multiple emissivity products.
- Developing a consistent parametric emissivity modeling scheme for different land cover types.

Future plan

Processing and analyzing different emissivity products and developing an integrated land surface emissivity database;

Continuing to develop the emissivity models

Reference (1)

- Jin, M., S. Liang, (2006), Improved emissivity parametrization for land surface modeling using global remote sensing observations, *Journal of Climate*. 19(12) :2867-2881.
- Liang, S., Quantitative Remote Sensing of Land Surfaces, John Wiley and Sons, Inc., 534 pages, 2004.
- Wang, K., Wan, Z., Wang, P., Sparrow, M., Liu, J., Zhou, X., et al. (2005). Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. *Journal of Geophysical Research*, 110, D11109, doi:10.1029/2004JD005566.
- Wang, K., Z. Wan, P. Wang, J. Liu, and M. Sparrow (2007). Evaluation and Improvement of the MODIS Land Surface Temperature/Emissivity Products Using Ground-based Measurements at a Semi-desert Site on the Western Tibetan Plateau. *International Journal of Remote Sensing*, 28, 2549-2565.
- Wang, W., S. Liang, , and T. Meyer, (2008a), Validating MODIS land surface temperature products, *Remote Sensing of Environment*, 112:623-635

Reference (2)

- Wan, Z. (2008), New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. *Remote Sensing of Environment*, 112, 59-74.
- Wang, W., S. Liang, J. A. Augustine (2008b), Estimating clear-sky land surface upwelling longwave radiation from MODIS data, *IEEE Transactions on Geoscience and Remote Sensing*, in press.
- Wang, K. and Liang (2008). Evaluation of ASTER and MODIS collection 5 land surface temperature/emissivity products with surface longwave radiation and ASTER retrievals at SURFRAD sites, *Remote Sensing of Environment*, under review.

Thank You I