Observation Impact and Satellite Channel Selection JCSDA Project 75-M027-0-5-5

Rolf Langland, Nancy Baker, Benjamin Ruston Naval Research Laboratory, Monterey, CA

> William Bell UK Met Office, Exeter, UK

> > June 2008

Adjoint Sensitivities

- •Sensitivity to radiances assessed with adjoints of NAVDAS & NOGAPS
- •Energy-weighted forecast error norm (moist TE-norm)
- **C** = matrix of energy-weighting coefficients
- f = NOGAPS forecast
- t = verifying NAVDAS / NOGAPS analysis
- **x** = NOGAPS state vector (u, v, θ , q, p_t)

 e_f has units of J kg⁻¹

 \langle , \rangle = scalar inner product

$$e_f = \left\langle \left(\mathbf{x}_f - \mathbf{x}_t \right)^T, \mathbf{C} \left(\mathbf{x}_f - \mathbf{x}_t \right) \right\rangle$$

Observation Impact Concept

Observations move the forecast from the **background trajectory** to the **trajectory starting from the new analysis**

⁶ hr assimilation window

Langland and Baker (Tellus, 2004)

$$\delta e_{f}^{g} = \left\langle (\mathbf{y} - \mathbf{H}\mathbf{x}_{b}), \mathbf{K}^{T} \left\{ \frac{\partial e_{f}}{\partial \mathbf{x}_{a}} + \frac{\partial e_{g}}{\partial \mathbf{x}_{b}} \right\} \right\rangle$$

- We use a moist total energy forecast error norm, *f*=24h, *g*=30hr
- Forecasts are made with NOGAPS-NAVDAS.
- Adjoint versions of NOGAPS-NAVDAS are used to calculate observation impact
- The impact of observation subsets (e.g., separate channels, or separate satellites can be easily quantified)

 $\delta e_f^g < 0.0$ the observation is BENEFICIAL $\delta e_f^g > 0.0$ the observation is NON - BENEFICIAL

Why do some "good data" have non-beneficial impact ?

- Observation and background error statistics for data assimilation cannot be precisely specified
- This implies a statistical distribution of beneficial and non-beneficial observation impacts
- Assimilating the global set of observations improves the analysis and forecast, even though 40-50% of observation data are non-beneficial in any selected assimilation

Information about the impact of individual observations and subsets of observations can be used to improve the data assimilation and observation selection procedures

On-line Observation Impact monitor

www.nrlmry.navy.mil/ob_sens/

Total impact by instrument type – Jan2007

NAVDAS Ob Count Jan2007 00Z+06Z

Shine

NAVDAS 24h Ob Impact Jan2007 00Z+06Z (J kg⁻¹)

Г

					Ships
					SatWind
					SSMIspd
					RaobDsnd
					Qscat
					Windsat
					MODIS
					LandSfc
					Aircraft
					AMSUA
					Tcbogus
Dry TE Norm (150mb-sfc)					SHEMps
	1	1	1	1	1
-100	-80	-60	-40	-20	0

NAVDAS Ob Count Jan2007 12Z+18Z

NAVDAS 24h Ob Impact Jan2007 12Z+18Z (J kg⁻¹)

Impacts per-observation by instrument type

Percent of observations that produce forecast error reduction $(e_{24} - e_{30} < 0)$

NAVDAS - Pct of obs that reduce 24h fcst errror - Jan2007 00Z+06Z

NAVDAS - Pct of obs that reduce 24h fcst errror - Jan2007 12Z+18Z

Example: SATWIND data

Date: Jan-Feb 2006

processing problem identified

Issue: Large innovations and non-beneficial impact from satwinds at edge of coverage area

Action Taken: Ob data removed if > 39° from satellite sub-point – gave 3-hr improvement in SHEM NOGAPS forecast skill

Restricting SSEC MTSAT Winds 500 mb Height Anomaly Correlation

Southern Hemisphere

Control

Restricted Winds

February 16 – March 27, 2006

Observation Impact

Ob sensitivity summary: Aug 15-26, 2006

spatial distribution shows strong impacts are generally outliers

beneficial channels have slightly positively skewed distributions

Observation Impact

(Reduction in forecast error using moist static energy norm)

Observation Impact

1.e3+J/kg

20

SSMIS provides "gap filling"

SSMIS and AMSU have similar forecast error reductions

Preprocessor mitigating most problems with SSMIS data stream

-20

-10

0

10

Summary

- Ob sensitivities proven useful in refining channel list
 - early CRTM release (2005), low model top cause AIRS channels around 14 μ m to have negative impact
- Ob sensitivities valuable real-time diagnostic
 - monitoring of ob sensitivities of satellite wind vectors identified problem with GMS feature-track winds
- Ob sensitivities potential for targeted thinning
 - spatial variation of observation sensitivities are being explored for unlocking intelligent methods for selective ob thinning

Summary

- IASI data undergoing trial assimilation in NAVDAS-AR
- IASI capable version of CRTM performing reliably
- Observation sensitivities will be used to 'refine' channel list
- Principle component assimilation offers possibility to utilize "full spectrum" at little extra computational costs

Future Work

- Test NASA 1D-Var principle component retrievals against channel subset, and PC assimilation
- Collocation with Met-Op AMSU simultaneous emissivity retrieval