Assimilation of Clouds & Precipitation: Year 1 Progress Report

Ralf Bennartz¹, Tom Greenwald², Andrew Heidinger³, Mark Kulie¹, Chang Hwan Park¹

Atmos. & Oceanic Sci., University of Wisconsin
CIMSS, University of Wisconsin
NOAA/NESDIS

Outline

- > Introduction
- Towards 'modeling chains'
- Errors and error covariances
- Towards assimilation studies
- Status and plans for year 2

Recommendations from IPWG Snowfall Workshop April 2008

Recommendation 1: Encourage the generation of **community CRM/NWP model profile databases** that represent natural variability. A parallel effort for databases from observations or combined model simulations and observations is also encouraged. **Modeling chains** (CRM/NWP -> optical properties -> radiative transfer) are highly valuable tools to evaluate model performance and to develop parameterizations for general use in cost-driven applications.

Recommendations from IPWG Snowfall Workshop April 2008

Recommendation 2: Further intensification of data assimilation studies for the inclusion of precipitation observations in NWP analysis systems (including aspects like short-range forecast errors inside precipitation, observation operator errors/linearity, control variables, model resolution). Investigation of assimilation schemes without linear model assumptions. Systematic studies to **evaluate** *error covariances* used for constructing retrieval databases; possibly error databases.

Outline

- > Introduction
- Towards 'modeling chains'
- Errors and error covariances
- Towards assimilation studies
- Status and plans for year 2

- Very accurate fits for all parameters
- Physically realistic behavior
- Sigmoid easy to differentiate (dS/dx=S(1-S))
- Easy to implement TL and ADJ versions
- Uncertainties/errors can be specified via differences for different ice models

Outline

- > Introduction
- Towards 'modeling chains'
- Errors and error covariances
- Towards assimilation studies
- Status and plans for year 2

Slant Path Errors and Error Correlations

Error Correlations (with Staelin/Surussavadee)

- 122 MM5 simulations of various global precipitation systems (each 190x190x41 with 5 km horizontal resolution, bulk microphysics)
- Ice scattering using Liu particles with Bennartz/Kulie approach
- Marshall-Palmer rain
- AMSU frequencies
- Coincident AMSU overpasses
- SOI Plane parallel versus SOI-SLANT

Fig. 5. One hundright Surfussayadee and Staelin (2006) numbers 1–12 stand for January–December, and 14 indicates largely unglaciated cases.

Error Correlations: Ocean

Error Correlations: Land

Outline

- > Introduction
- Towards 'modeling chains'
- Errors and error covariances
- Towards assimilation studies
- Status and plans for year 2

Towards assimilation studies

- Simple case: A one dimensional parametric rain model
 - Test impact of different error covariances
 - Fast and simple to use
 - General insight information content analysis
 - Less complex less realistic
- Full complexity: WRF mesoscale studies
 - Would yield actual forecast impacts but hard to quantify
 - Computationally demanding
 - Highly complex more realistic

One dimensional parametric rain model (modified from Petty (2001))

	Description	Units	Light Snow	Heavy Snow	Stratiform
T_s	2 m temperature	С	-3.0	-3.0	10.0
Z_c	Liquid cloud base	km	0.1	1.0	0.6
<i>LWC_{MAX}</i>	Cloud liquid water content maximum	g m ⁻³	0.1	0.1	0.15
LWP	Cloud liquid water path	kg m ⁻²	0.0005	0.15	0.2
Z_S	Bott om of snow layer	km	2.0	2.0	2.6
Z_{ST}	Top of snow layer	km	4.0	5.0	5.5
RH _I	RH with respect to ice in snow layer	-	1.01	1.06	1.05
RH _{CLR}	RH with respect to ice above cloud top and outs ide of snow layer	-	1.01	1.01	1.1
C_{VS}	Vapor to snow conversion rate	$mm h^{-1} hr^{-1} mm^{-1} Pa^{-1}$	0.01	0.05	0.015
R _{SFC}	Surface rain rate	$mm h^{-1}$	0.12	3.8	1.0
Z_F	Freezing level height	Km	-	-	2.0
dBZ _{MAX}	Maximum radar reflectivi ty	dBZ	8.1	23.6	24.8

One dimensional parametric rain model (modified from Petty (2001))

WRF: Towards Assimilation Studies

- WRF installed and running for several test cases
- Collocated AMSR (as well as ground radar data)
- Initial forward simulation studies

Case study: Frontal system 26 Nov. 2002 over Baltic sea (observed by BALTEX Radar)

AMSR DATA (36V-89V)

BALTRAD COMPOSITE RAINRATE IMAGE

WRF domains

Case study: Frontal system 26 Nov. 2002 over Baltic sea (observed by BALTEX Radar)

AMSR DATA (36V-89V)

BALTRAD COMPOSITE RAINRATE IMAGE

Longitude [degrees]

DOMAIN2

20

Longitude [degrees]

24

R Α D Α R

W R F

FRONTAL CASE

CONVECTIVE CASE

100

Plans for Year 2

- Further test and integrate SOI with other models in CRTM
- Develop formulation for observation error including all modeling errors, RT solver, ice scattering, cloud overlap, 3 D effects etc.
- Further pursue simplified as well as full WRF assimilation studies

Assessing error characteristics: What are the challenges?

- Representativeness of forecast model
- Scale of forecast model
- Gas absorption models
- Representation of particle scattering
- Surface emissivity models
- Radiative transfer solver
- Instrument characteristics
- Various components need to go together