

Improved Spectroscopy for Microwave and Infrared Satellite Data Assimilation

Vivienne Payne, Jean-Luc Moncet and Tony Clough*

JCSDA 6th Workshop on Satellite Data Assimilation

June 10-11 2008 • •

*Currently at Clough Associates

Acknowledgements

- AER: Mark Shephard, Jennifer Delamere, Karen Cady-Pereira and Eli Mlawer
- UMBC: Larrabee Strow, Scott Hannon
- U. Wisconsin: Dave Tobin, Dave Turner
- NASA Langley: Bill Smith's group
- **NASA JPL:** TES Algorithm Development Team
- Paris XII, Creteill: Jean Michel Hartmann's Group
- UMass: Bob Gamache
- ANL: Maria Cadeddu
- Radiometrics: Mike Exner
- University of L'Aquila: Nico Cimini
- NOAA: Ed Westwater

Overview

• Microwave

– MonoRTM

- Comparisons with Rosenkranz model
- Water vapor continuum validation
- Infrared

Updates to LBLRTM

- » General update to latest HITRAN 2004 line parameters
 - · Water vapor line widths
- » CO2 line mixing
- Validation against satellite measurements
 - » AIRS/SARTA/LBLRTM comparisons
 - » IASI comparisons
- Validation against ground-based measurements
- Future plans
- Summary

What is 'Truth'?

- 'Truth' at the Level Required is not readily available
 - sonde accuracies; spatial and temporal sampling
 - laboratory measurements
- Spectral Residuals are Key! (Clough perspective)
 - Consistency within a band system
 - Consistency between bands $\,$ > AIRS, IASI ν_2 and ν_3 bands to investigate consistency for CO_2
 - Consistency between species
 - » TES: temperature from O_3 and H_2O consistent with CO_2 ; N_2O
 - Consistency between instruments
 - Consistency between infrared and microwave
 - Validation using both upwelling and downwelling measurements

Microwave

Microwave topics

- MonoRTM
- Differences from the Rosenkranz model
- Update on line parameters
- Ongoing continuum validation

MonoRTM

- Microwave monochromatic radiative transfer model
 - "laser" i.e. single frequency version of LBLRTM
- Developed at AER (Clough et al., 2005)
- Useful range: 0-1648 GHz
- Spectroscopic parameters from external line file
 - HITRAN 2004 with specific updates/modifications
 - » 22 GHz and 183 GHz line intensities from Clough et al (1973)
 - » Other 22 GHz and 183 GHz line parameters from Payne et al. (2008)
 - » Oxygen widths, line coupling parameters from Tretyakov et al (2005)
 - Ground-based validation of oxygen parameters in MonoRTM: Cadeddu et al. (2007)
- Latest version: Monortm_v3.3
- Lineshape: Van-Vleck Weisskopf
- Continuum: CKD_2.4

MonoRTM: Recap from previous JCSDA Workshop

- Work presented at 2007 Workshop:
 - Tretyakov O₂ parameters (line widths, line mixing coefficients) validated using ground-based data
 - » Results now very similar to Rosenkranz
 - Had started validation of water vapor line widths
 - Had started validation of water vapor continuum
- Important remaining differences between MonoRTM and Rosenkranz models:
 - Spectroscopic parameters
 - » Width of the 22 GHz water vapor line
 - Ground-based validation supports MonoRTM width (Payne et al., 2008, IEEE TGRS)
 - » Temperature dependencies of widths
 - MonoRTM contains up-to-date values from state-of-the-art calculations
 - Continuum
 - » Foreign & Self broadening
 - Ground-based MWR data indicates parameters in Rosenkranz model are not consistent at 31.4 GHz

- Number of lines

- » Rosenkranz does not include all lines or all species
- » MonoRTM: line info from external file
 - · Can include/exclude lines according to speed/accuracy requirements
 - Weak water vapor lines can have non-negligible effect
 - Ozone can be important (e.g. AMSU Channel 18 (183 +/1 GHz))
 - MonoRTM line file stores line parameters to greater precision
 - Leads to small differences (e.g. O2 line positions)

Brightness temperature comparisons: MonoRTM vs RK

- Same RT code used (different models used for optical depth calculations).
- No ozone in either simulation.

Water vapor: Line widths

lower width improves SSMI biases) »Tom Wilheit (Texas A&M) - TMI and SSMI

eg AMSU/AMSR-E and SSMIS!

Water vapor continuum

Clough and Cady-Pereira

Continuum uncertainty

Extending the SGP MWR analysis

Measurements

Microwave Summary

• Main differences between MonoRTM v3.3 and Rosenkranz (2007):

- Width of 22 GHz water vapor line
- Water vapor continuum
- Number of lines and input format

Ground-based validation supports MonoRTM 22 GHz line width

- Additional evidence from upwelling radiation:
 - » UK Met Office (W. Bell and P. J. Rayer lower width value improves SSMI biases)
 - » Tom Wilheit (Texas A&M) TMI & SSMI

• Ongoing/future work:

- Continued validation at ARM sites
- "Best fit" water vapor continuum using a range of frequencies
- Consistency between microwave and infrared (AERI instrument at NSA)
- Zeeman line splitting

Infrared

LBLRTM

Line-by-line radiative transfer model

- Recent updates to LBLRTM
- Validation against satellite data
 - AIRS/LBLRTM/SARTA comparisons
 - IASI/LBLRTM comparisons
- Validation against ground-based data
 - AERI
- Working closely with Tony Clough

LBLRTM: Line parameters

- HITRAN: reference source for 'AER' Line Parameters
 - Substitutions made only for very specific reasons and only with extensive validation
- aer_v_2.0 (0 -22,656 cm-1)

	2007	2008	Under investigation
H ₂ O	HITRAN 2000	HITRAN 2004 + updates Updated widths AER co-authors on Gordon et al., 2007	Temperature dependence of widths (R. Gamache) Strengths (L. Coudert)
CO ₂	HITRAN 2000 P&R branch line coupling implemented for strongest bands (Niro et al., 2005, J-M Hartmann)	HITRAN 2000 (Identical to HITRAN 2004 for v2 and v3 regions) Niro et al. line coupling implemented for all CO ₂ bands	MIPAS CO2 v3 strengths and widths (S. Tashkun, J-L. Teffo et al., J-M. Flaud et al.) Corresponding update to line coupling, chi-factor, CO ₂
O ₃	MIPAS (Wagner et al., Flaud et al.)	HITRAN 2004	MPAS VS • • HITRAN 2004

LBLRTM: MT_CKD_2.1 Continuum

Water Vapor

- Self / Foreign
- Single Line Shape for each

Carbon Dioxide

- Continuing Research Focus
- in conjunction with CO₂ line parameters, line coupling and lineshape (chi-factor)
- Nitrogen: Collision Induced
 - 2330 cm-1 Region
- Oxygen: Collision Induced
 - 1600 cm-1 Region

AIRS/model comparisons

Models

• LBLRTM v11.3

- HITRAN 2004 line parameters, except for CO2
 - Includes water vapor width updates from Gordon et al. (2007)
- CO2
 - line parameters are HITRAN 2000 (consistency with line mixing)
 - Q / P&R branch line mixing from Niro et al. (2005)
 - Chi-factor currently set to 1.0
- Continuum: MT_CKD_2.1

• SARTA v1.05

- version 4 of AIRS RTA, January 2004
- Line parameters based on HITRAN 2000 (Strow et al. 2006)
- Line mixing / chi factors
 - Tobin (1996), De Souza-Machado et al. (1999)
- H2O continuum loosely based on MT_CKD
 - but with large modifications (scaling by up to 10x in selected regions)

- Transmittances tuned to agree with the dataset in these comparisons

Measurements

- AIRS validation, phase 1
 - ARM Tropical Western Pacific at Nauru
 - Over ocean
 - Avoid issues of modeling of land emissivity
 - Night-time
 - Avoid non-LTE effects and reflected solar radiation
 - "Clear-sky" AIRS overpasses
 - Sonde launches within 1 hour, 30km of AIRS measurement
 - 39 AIRS spectra (multiple AIRS match-ups for each sonde)
 - 8 distinct radiosonde profiles
 - PWV range: 4.0 to 5.6 cm

Specification of atmospheric state

Layer profiles supplied by L. Strow

- Temperature, H₂O
 - ARM "best estimate" files below 60 mbar (Tobin et al., 2006)
 - Constructed from sondes launched at times around AIRS overpasses
 - AIRS retrieval (uses SARTA) above 60 mbar
- CO₂ VMR set to 370 ppmv
- Other trace gases
 - O_3 from ECMWF (Strow et al 2006)
 - CH₄ and CO columns have been fitted
 - All other molecules from US standard atmosphere

Layering

- 100 layers
- Layering is fine enough that switching on/off the "linear-in-tau" approximation in LBLRTM has negligible impact

Fig. 1 from Strow et al. (2003): Mean layer pressures used in the AIRS radiative transfer model

AIRS/model comparisons: Mean differences for 39 AIRS match-ups at ARM TWP

Lower 3 plots: Black dots show subset of 281 channels used by NCEP

Comparison to results shown in Strow et al. (2006)

Strow et al (2006): ARM TWP ABOVE (Chesapeake Bay) Minnet (Carribean)

This work: Phase 1 TWP only

STROW ET AL.: VALIDATION OF THE AIRS RTA

Figure 9. (a) Biases relative to all clear-sky RS-90 sondes, using version 4 RTA, which has been tuned using ARM-TWP Phase 1 observations. (b) Biases relative to all RS-90 sondes but with no empirical adjustments/tuning made. Note that little adjustment is made to channels below 690 cm⁻¹ (see text).

Similar features in "untuned" SARTA and LBLRTM residuals

• To do:

•Direct comparison of LBLRTM with "untuned SARTA" results for same dataset

CO2 667 cm⁻¹ Q branch

LBLRTM currently using 1st order perturbation theory

- not sufficient for sharp 667 cm-1 Q-branch
- Exact calculation is very time consuming
 - Niro et al., 2005
- Approaches to be investigated:
 - 2nd order perturbation
 - parameterization of Niro et al.

Residuals at 2500 cm⁻¹: "Good" and "bad" ARM TWP Phase 1 cases

- "Bad" case:
 - Sonde T, H2O profile does not accurately represent atmospheric state observed by AIRS?
 - Influence of cloud?
 - Demonstrates importance of careful selection of cases in addition to ensembles for RT model validation

AIRS/model comparisons

- CO₂ residuals:

•Tropospheric

- Sonde provides good estimate of "true" temperature
- v2 region agrees well with sonde in troposphere
- $-\,\mathrm{v3}$ region issues with modeling outer edges of the band
 - » Both in LBLRTM and "untuned" SARTA

Stratospheric

- "True" temperature is more difficult to determine
- Models essentially not yet validated in the stratosphere
- LBLRTM/SARTA agree well (apart from 667cm⁻¹ Q branch)
 - » LBLRTM uses first order perturbation for line coupling
 - » First order perturbation not enough for 667 cm⁻¹ Q branch

- H₂O residuals

- Sonde should not be regarded as "truth"
 - Sonde biases
 - Variation of H_2O on small temporal and spatial scales
- $-H_2O$ continuum:
 - » Known to within a few percent at 900 cm⁻¹
 - » Larger uncertainty at 2500 cm⁻¹

Figure from Strow et al (2006)

Figure 8. Multipliers to the channel-averaged absorption coefficients in the version 4 RTA. Different multipliers were derived for the RTA fixed gases, water lines, and water continuum using the ARM-TWP Phase 1 observations.

AERI comparisons also indicate possible evidence of H_2O dependence for v > 2385 cm⁻¹ (past CO2 v3 bandhead)

IASI/LBLRTM comparisons

IASI/LBLRTM comparisons

Mark Shephard, Tony Clough

- Night-time data from JAIVEx campaign (April/May 2007)
- Land case
 - Over ARM SGP site
 - Radiosonde profiles as initial guess for temperature, H_2O
 - Initial guess surface emissivity supplied by Bill Smith (NASA Langley)
 - Retrievals of surface emissivity, temperature, H_2O and other trace gases

Ocean cases

- Gulf of Mexico
- Drop-sondes as initial guess for temperature, H₂O
 - » Maximum altitude ~9 km
- Surface should be well characterized
- Retrievals of temperature, H_2O , other trace gases

<u>JAIVEx 20 Apr 2007</u> <u>Gulf of Mexico (~03:35 UTC)</u>

Mark Shephard, Tony Clough

IASI: ARM SGP

Mark Shephard, Tony Clough

IASI: Gulf of Mexico

IASI/LBLRTM comparisons

• IASI measurements are excellent!

• Experience with ocean cases:

- "Good" high H₂O cases show negative residual at 2500 cm⁻¹
- "Good" low H₂O cases show positive residual at 2500 cm⁻¹
- Can't attribute both to the H_2O continuum
 - » Residual contribution due to H_2O continuum would go to zero for low PWV profiles
- H₂O continuum is not the only piece of the answer at 2500 cm⁻¹.....
- Residuals in H2O region remain large after retrieval
 - Issues with HITRAN H_2O line parameters?
 - Laurent Coudert:
 - » New measurements indicate HITRAN strengths may be 5% to low for strong lines
 - Bob Gamache
 - » Temperature dependences of widths in HITRAN are out of date
 - » Large impact in upper troposphere

Future Plans

- LBLRTM:
 - Update CO2 v3 line parameters
 - HITRAN_MIPAS database: line parameters from Tashkun, Teffo, Flaud et al
 - Validated by Flaud et al. using MIPAS spectra
 - Update line coupling, continuum and chi-factor accordingly
 - Initial validation using laboratory spectra (J. Johns)
 - Re-assessment of H₂O self continuum in region of 2500 cm⁻¹
 - Validation using AIRS, IASI and AERI
 - Validation of LBLRTM in the stratosphere
 - Comparisons with "untuned" SARTA
 - Investigation of alternative sets of v2 water vapor line parameters
 - Line strengths from L. Coudert
 - Temperature dependences of widths from R. R. Gamache

Improved Spectroscopy for Microwave and Infrared Satellite Data Assimilation

P.I.: J.-L. Moncet, AER, Inc.

Summary of Accomplishments

• Microwave

- Publication on water vapor line widths
- Validation of water vapor self & foreign H_2O continuum using ground-based measurements

• Infrared

- Implementation of P&R branch line coupling for all CO₂ bands
- Updated water vapor line widths
- AIRS/LBLRTM/SARTA comparisons
- IASI/LBLRTM comparisons

Future Work

Microwave

- Find optimal fit for self and foreign H₂O continuum
- Zeeman splitting

Infrared

- Update $CO_2 v3$ line parameters
 - Update CO₂ line coupling, lineshape and continuum
 - Validation using up- & down-welling measurements
- Assessment of H_2O continuum in 2500 cm⁻¹ region using upwelling, & downwelling measurements
- Validation of LBLRTM in the stratosphere
- Comparisons with "untuned SARTA"
- Investigate alternative H₂O line parameters

Figure 2: AIRS/LBLRTM/SARTA comparisons for ARM TWP