

NCEP Satellite Data Assimilation Overview

S. Lord J. Derber, M. Iredell R. Treadon, W-S Wu, D. Parrish, D Kleist 1 May, 2007

Outline

- I. Overview: NCEP Gridpoint Statistical Interpolation (GSI) analysis
- II. Data assimilation development strategy
- III. GFS implementation 1 May (today)
- IV. FY07-08 priorities

GSI Overview

- Evolutionary combination of the global SSI analysis system and the regional ETA 3DVAR
 - Major code re-design
 - New features
- Uses a grid space definition of the background errors
 - Allows use of situation dependent background errors
- Operational for
 - North American Model (NAM)
 - Real-time Mesoscale Analysis (RTMA)
 - 2 dimensional surface analysis for NWS Offices
 - Global Forecast System (GFS) (today)
- Available for use in all WRF dynamical cores

GSI Overview (cont)

- Code re-designed for community use
 - F90/95 structures and utilities
 - Improved efficiency
 - Re-designed data distribution
 - Some OpenMP
 - Better documentation
 - Improved portability
 - Less dependency on IBM
- Currently 38 registered groups/users
 - NCEP providing only minimal support for external groups due to lack of resources
- Major focus of NCEP and NASA/GSFC/GMAO atmospheric analysis development
 - Multi-organizational code management
- Re-structuring for ESMF compatibility (underway)

GSI Overview (cont)

- New features (implemented)
 - Spatial derivatives allows:
 - non-local operators
 - improved definition of balance operators
 - dynamical balance constraints
 - Improved control over observational errors
 - Improved moisture analysis variable
 - Diagnostic files for background and each outer iteration
- New features (under testing)
 - Variational QC (global)
 - Variational bias correction for conventional data
 - SST analysis by direct use of radiances (global)
 - IR and MW data
 - Simplified 4DVAR (global)
 - Situation dependent background error (RTMA, regional)

Ongoing work – Simplified 4DVAR

- Adiabatic time derivatives
 - Filtered to retain "slow" modes
 - Used to extrapolate state to obs times
 - Captures obs time changes due to slow modes
- No additional cost since calculations already included in constraint term

GSI Overview (cont)

- New observations (implemented)
 - COSMIC
 - AIRS (all FOV)
- New observations (testing)
 - Summer 2007
 - METOP AMSU, HSB, HIRS
 - GOES 1x1 FOV sounder radiances
 - Fall/Winter 2007/08
 - AMSR-E
 - Windsat
 - SSM/IS
 - CHAMP
- Observations under development
 - IASI
 - OMI
 - ENVISAT altimeter
- New analysis variables
 - Constituent gas assimilation
 - Aerosols
- Improved radiative transfer
 - Surface emissivity models
 - Cloud absorption & reflection
- Data sets (albedo, vegetation, land type) from JCSDA
 - Unified land surface treatment (data assimilation, model)

Data Assimilation Development Strategy

- Three closely related efforts
 - Develop Simplified 4D-Var (S4DV) and Situation-Dependent Background Errors (SDBE)
 - 2. "Classical" 4D-Var (C4DV)
 - 3. Ensemble Data Assimilation (EnsDA)
- Partners
 - NCEP/EMC
 - NASA/GSFC/GMAO
 - THORPEX consortium (TC)
 - NOAA/ESRL
 - CIRES
 - U. Maryland
 - U. Washington
 - NCAR

Data Assimilation Development Strategy (cont)

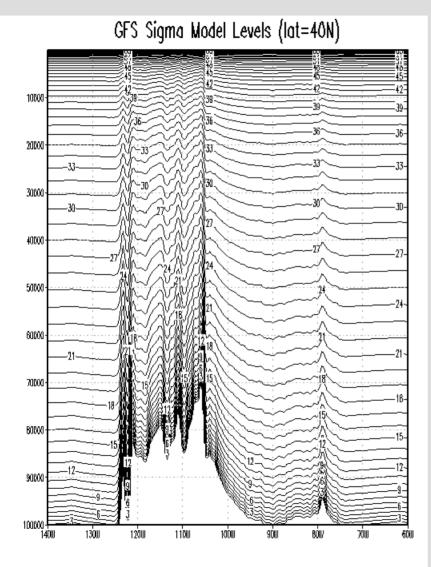
- Flexible schedule due to advanced nature of work
 - ~yearly upgrades of SDBE/S4DV from NCEP/EMC
- C4DV + EnsDA
 - 2007-2008
 - Prototype development
 - 2008
 - Full parallel testing
 - Transition decision (between 3 candidates)
 - 2009-2010 (if warranted)
 - Pre-implementation testing
 - Operational implementation

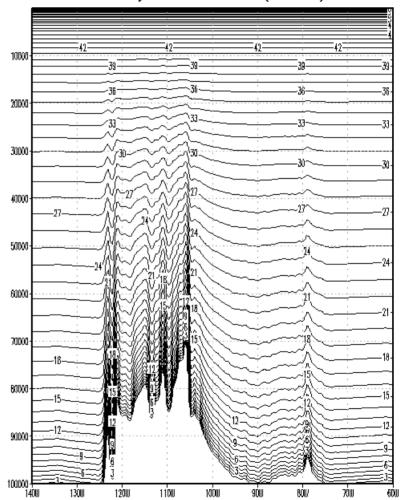
GFS implementation – 1 May 2007

- Unify the NCEP 3DVAR assimilation system under the GSI, improving some performance metrics without affecting others and preparing for future analysis improvements
- Change vertical coordinate to hybrid sigmapressure, reducing some upper air model errors
- Add new observing systems
- Modernize the radiation package
- Increase output particularly for hydrology

GFS implementation – 1 May 2007 Upgrades

- Analysis
 - GSI (Gridpoint Statistical Interpolation)
- Observations
 - Full resolution AIRS
 - COSMIC GPSRO
- Model
 - Physics
 - Modularized radiation package
 - Dynamics
 - Hybrid sigma-pressure vertical coordinate
- Post processing and products
 - Output hourly GDAS files
 - Change to internal model history file
 - More fields output in model flux file

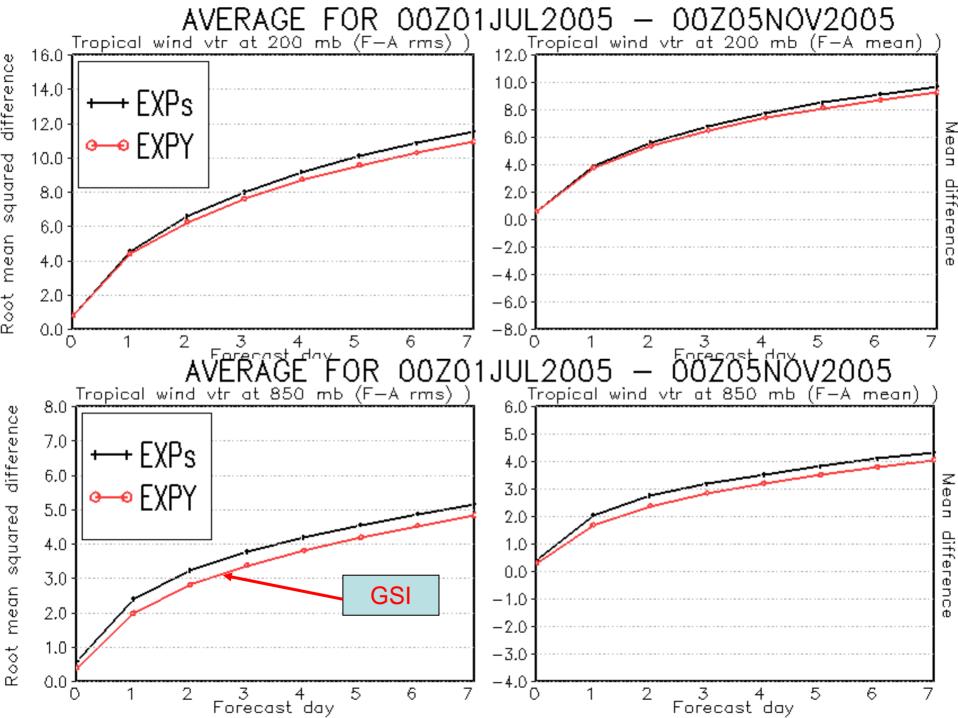

Physics changes


- Modularized radiation package
 - Overall restructuring of radiation related programs to help future development and upgrade.
 - In RRTM1-LW, minor upgrade of emissivity coefficient. Rare gas absorption effect turned on.
 - In aerosol calculation, vertical sigma based structure changed to pressure based structure
 - Minor bug correction in cloud related calculation
 - Performance of new radiation very close to operational model

Dynamics changes

- Hybrid sigma-pressure vertical coordinate
 - Model surface remain terrain-following in the lower troposphere but become pure pressure surfaces in the stratosphere
 - Reduces vertical advection errors and pressure-gradient calculation errors in the upper part of the model
 - Data assimilation and physics done on hybrid sigma-pressure coordinate as well

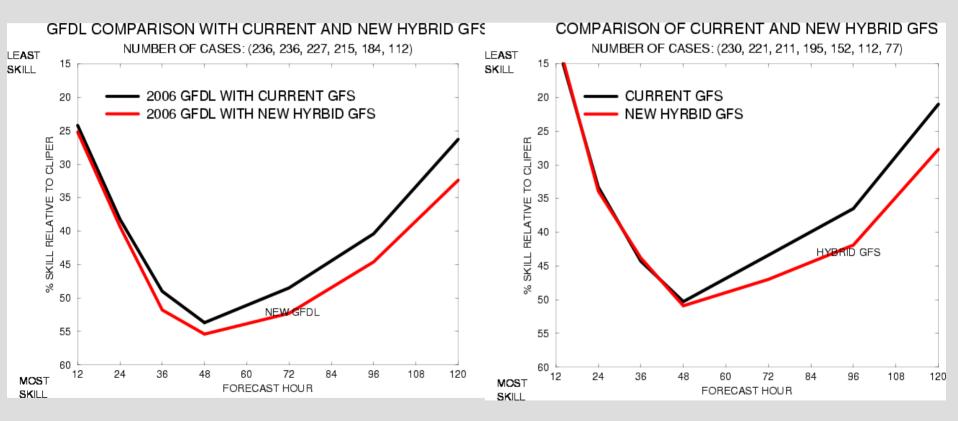
Vertical coordinate comparison across North America

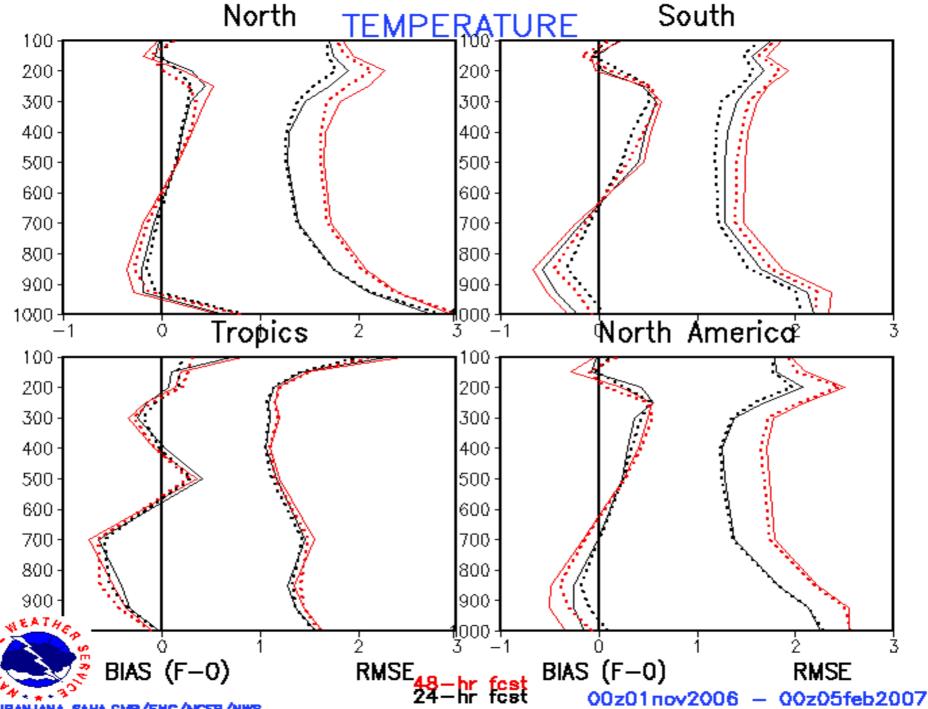


GFS Hybrid Model Levels (lat=40N)

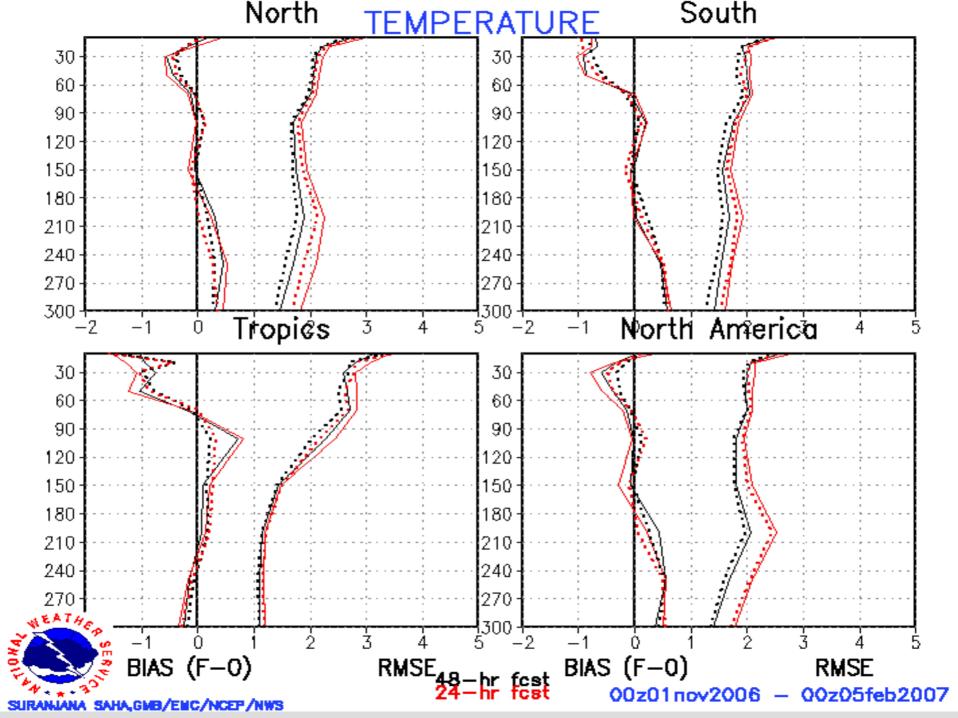
Final testing set

- Retrospective testing
 - 15 June 2005 to 5 November 2005 http://wwwt.emc.ncep.noaa.gov/gmb/para/paralog.2005tropics_retro_gsihybrid.html
 - 31 July 2006 to 5 November 2006 http://wwwt.emc.ncep.noaa.gov/gmb/para/paralog.2006tropics_retro_gsihybrid.html
 - 24 October 2006 to 5 February 2007
 http://wwwt.emc.ncep.noaa.gov/gmb/para/paralog.200607winter_retro_gsihybrid.html
- Real-time parallel
 - NCO started January 2007; in fairly final form about March 1, 2007 to present

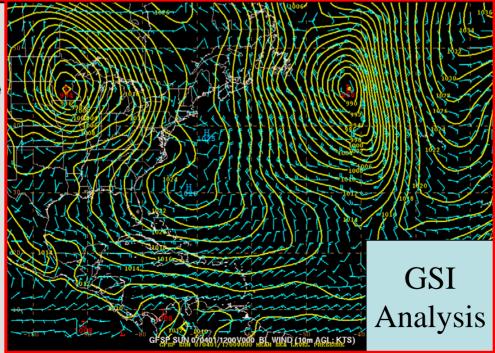

http://wwwt.emc.ncep.noaa.gov/gmb/para/paralog.gsihybrid.html



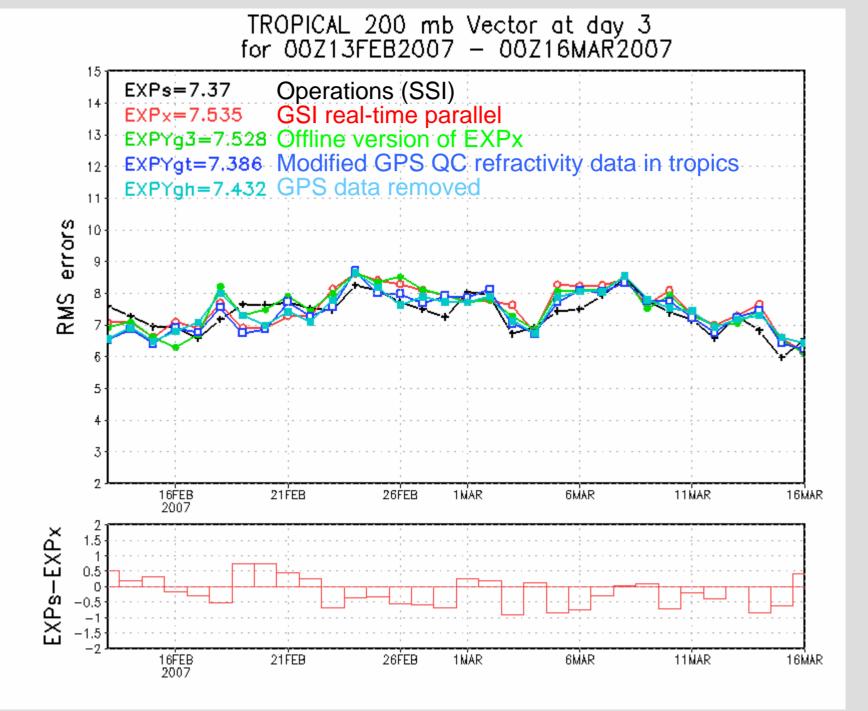
2005-2006 Atlantic Season Average Track Error Using The Current Operational and New GFS


GFDL

GFS



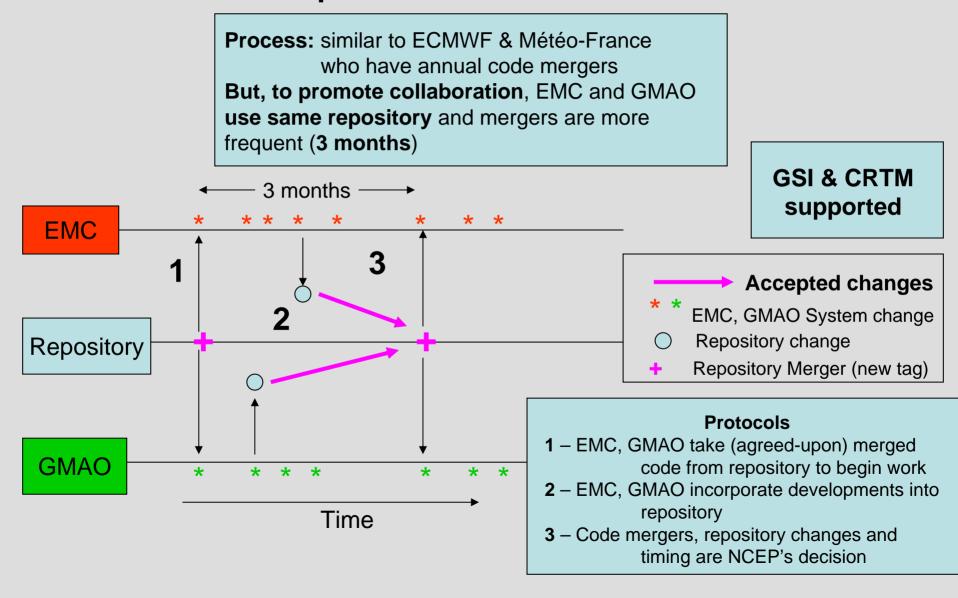
SURANJANA SAHA, GMB/ENC/NCEP/NWS


~5 day forecasts from the operational GFS (top left) and the hybrid/GSI GFS (top right) and verifying analysis (bottom) on 1 April 1200 UTC

Example Of 5 day Forecast 10 m wind Valid 1 April 2007 NCEP Parallel System

Tightening COSMIC QC in the tropics

- COSMIC experiments in fall 2006 and early winter 2007 showed positive impact
- In February 2007, several changes related to satellite winds went operational, and at the same time new observations including COSMIC were included real-time parallel data assimilation.
- The tropical upper troposphere scores degraded
- Several experiments were run to determine why.
- It was determined that tightening COSMIC QC in the tropics had the best effect at improving the performance.
- Further work is ongoing


Summary

- Outlined a comprehensive Data Assimilation (DA) development strategy
 - 2007-2010
- Phased evolution of the NCEP Production Suite
 - 2009-2015
 - Results in
 - Improved services for high impact weather
 - Application of advanced data assimilation techniques for improved model initial conditions
 - More efficient
 - Use of computing
 - Incorporation of new product lines for improved services
 - Earlier product delivery
 - More uniform and informative product stream
 - Advanced ensemble suite including components supported outside NCEP
 - Improved statistical post-processing
 - Reforecast and Reanalysis become operationally supported
 - Consistent with
 - ESMF
 - DA development strategy and interagency collaborations (current and anticipated)

Data Assimilation Development Strategy (2)

	Description	Lead Org.	Encouraging	Risk Factors All: cost (computer+human) increase ~3-10x
SDBE +S4DV	Extension of GSI	NCEP/ EMC	Evolutionary development path Experience through RTMA GSI operational 2007:Q3	Definition of appropriate covariance uncertain Multiple approaches (incl. ensembles)
C4DV	Strong constraint Model Adjoint + Tangent Linear (ATL)	NASA/ GMAO	Positive impact at other WX centers (ECMWF, UKMO, CMC, JMA) Various approximations	Cost + (3x code) Which forecast model will be used?
EnsDA	Several algorithms proposed Supported by THORPEX	TC	Good results at low res & low data volumes No ATL Relatively simple algorithms	Ens. DOF may not be sufficient (esp. hires) Data handling for large data volumes challenging Obs & model bias correction Covariance inflation req.

EMC-GMAO-STAR Code Management for Atmospheric Data Assimilation

