# The GMAO Ocean EnKF and Application to the Assimilation of Altimetry Data

Christian Keppenne<sup>1</sup>, Michele Rienecker, Jossy Jacob<sup>1</sup>, Robin Kovach<sup>1</sup>, Chaojiao<sup>2</sup> Sun, Shu-Chih Yang<sup>3</sup>, Yelena Marsha<mark>k</mark>

Global Modeling and Assimilation Office NASA Goddard Space Flight Center Greenbelt, MD 20771

<sup>1</sup>SAIC <sup>2</sup>University of Maryland Baltimore County <sup>3</sup>University of Maryland College Park

JCSDA Science Meeting, May 1-2, 2007

# GMAO Ocean Data Assimilation System (ODAS-1)

#### Algorithms:

- Univariate optimal interpolation (UOI): functional error covariances
- Multivariate OI (MvOI): steady-state ensemble based error representation
- Multivariate EnKF

#### Model:

- Poseidon v4 OGCM (Schopf and Loughe, 1995) :
- ·Quasi-isopycnal vertical coordinate
- Prognostic variables are h, t, s, u and v
- •Sea surface height (SSH) is diagnostic:  $\eta = \Sigma_i buoyancy(t_i, s_i)h_i/g$
- ·538 × 572 × L27 ((1/3° × 5/8° × L27): About 30 million prognostic variables

#### Observations:

- UOI: T. S

- MvOI: T, S, SSH

- EnKF: T, S, SSH

ODAS CGCM hindcast

LSM-AGCM-OGCM coupling

#### ODAS-2

#### Algorithms:

- UOI: tested

- MvOI: tested

- EnKF: upcoming

#### Models:

- Poseidon v5: tested

- MOM v4: development

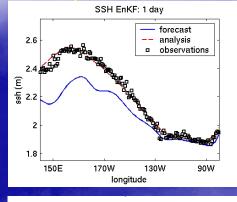
- MITGCM: upcoming

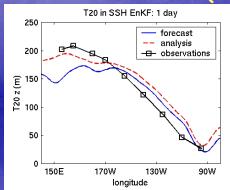
#### Why a new system?:

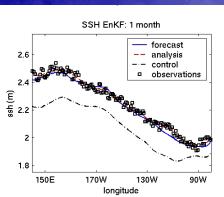
- Adherence to ESMF gridded component paradigm
- Model independent & enhanced portability
- Main new features:
- ·Faster analysis
- ·Analysis conducted at any arbitrary resolution
- ·Supports multi-model, multi-resolution ensembles
- ·OMF calculation at observation time
- ·4-D (x, y, z, 1/t) error-covariance specification
- ·No code changes required to include new data types

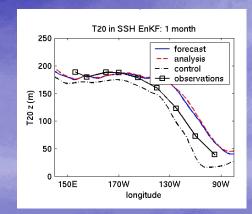
# Ocean EnKF (MWR 130, 2951-2965, 2002; JMS 40-41, 363-380, 2003; NRS 12, 491-503, 2005

- Multivariate compactly supported background covariances: updates T, S, u \*\*
- Massively parallel
- · System noise representation:
  - · Random linear combinations of model-state EOFs to simulate model errors
  - · Forcing perturbations to simulate forcing errors (colored spectrum in space and time)
- Online bias correction (used in SSH assimilation)


### Challenge: Transit EnKF from R&D status to a production application


- · Match the performance/outperform production ODAS
- · Good performance with very small ensembles

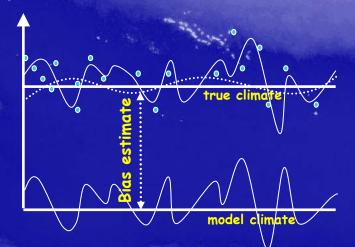

### EnKF validation experiments


- Assimilate T/P SSH anomalies + TAO & XBT temperature profiles 1/1/2001-12/31/2001
- \*Online bias estimation in SSH assimilation
- ·4 runs: 9, 17, 33 & 65 member EnKF
- ·Compare with
  - -no-assimilation control
  - -Production ODAS (temperature OI + S(T) correction)

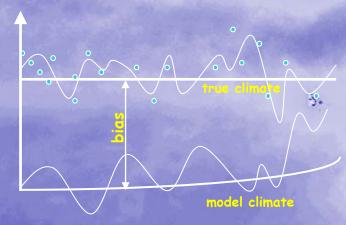
# first attempt to assimilate T/P anomalies with ENKF (2001)











T/P altimetry data are anomalies

Hence bias must be accounted for when assimilating SSH

# b) Assimilation with online bias estimation (OBE)



### a) Standard assimilation



Side by side estimation of:

- · Unbiased error
- · Climatological error (bias)

### Compactly supported EnKF (bias estimation omitted)

Time filter: 
$$x_{i,k}^{\Phi} = (1-\beta)x_{i,k-1}^{\Phi} + \beta x_{i,k}^{f}$$
,  $i = 1,...,n$ ,

$$x_{i,k}^{f} = M(x_{i,k-1}^{a}, f_{k-1}) + N_{i,k-1}, \quad E(N_{i,k-1}N_{i,k-1}^{T}) \approx Q_{k-1}, \quad i = 1,...,n,$$
 (1a)

$$S = \{s_1, s_2, \dots, s_n\} = \{H(\Phi(x_1^f - \overline{x}^f)), H(\Phi(x_2^f - \overline{x}^f)), \dots, H(\Phi(x_n^f - \overline{x}^f))\}, \quad (1b)$$

Spatial filtering operator 
$$HP^{f}H^{T} = \frac{1}{n-1}SS^{T}$$
, (1c)

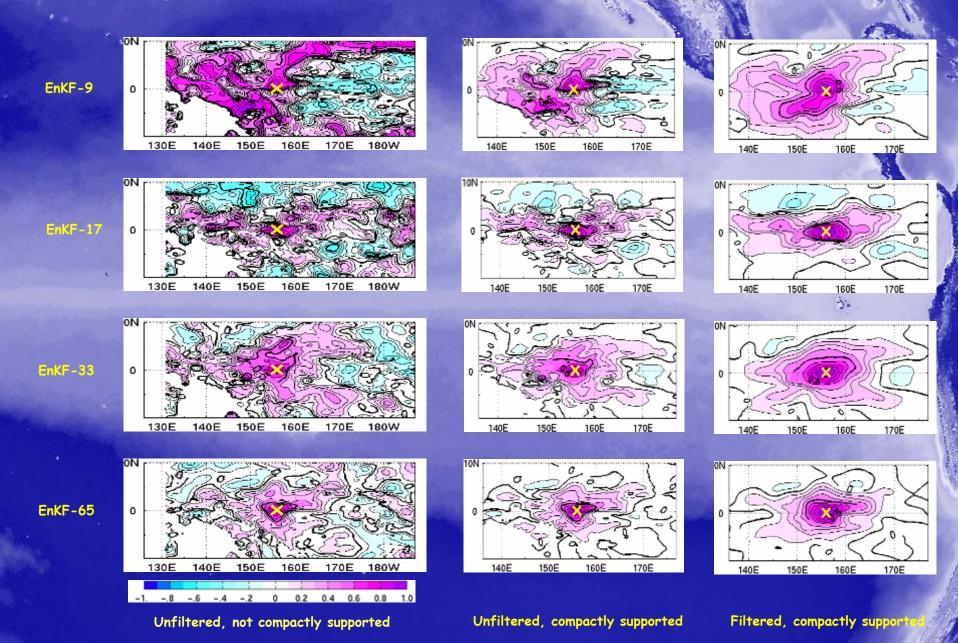
$$a_{i} = [C \bullet (HP^{f}H^{T} + R)]^{-1}(y + e_{i} - H(x_{i}^{f})), \quad E(e_{i}e_{i}^{T}) \approx R, \quad i = 1,...,n, \quad (1d)$$

$$x_{i,l}^{a} = x_{i,l}^{f} + \frac{1}{n-1} \sum_{j=1}^{n} (\Phi(x_{j,l}^{f} - \overline{x}_{l}^{f})) s_{j}^{T} (c_{l} \bullet a_{i}), \quad i = 1,...,n.$$
 (1e)

# Improving the performance for small ensembles

Spatio-temporal filtering of background-error covariances

- · Temporal filter applied to Xf integration (exponential moving average)
- Spatial filter applied to (X<sup>f</sup> <X>) deviations (Gaussian filter)


### Effect of time filtering

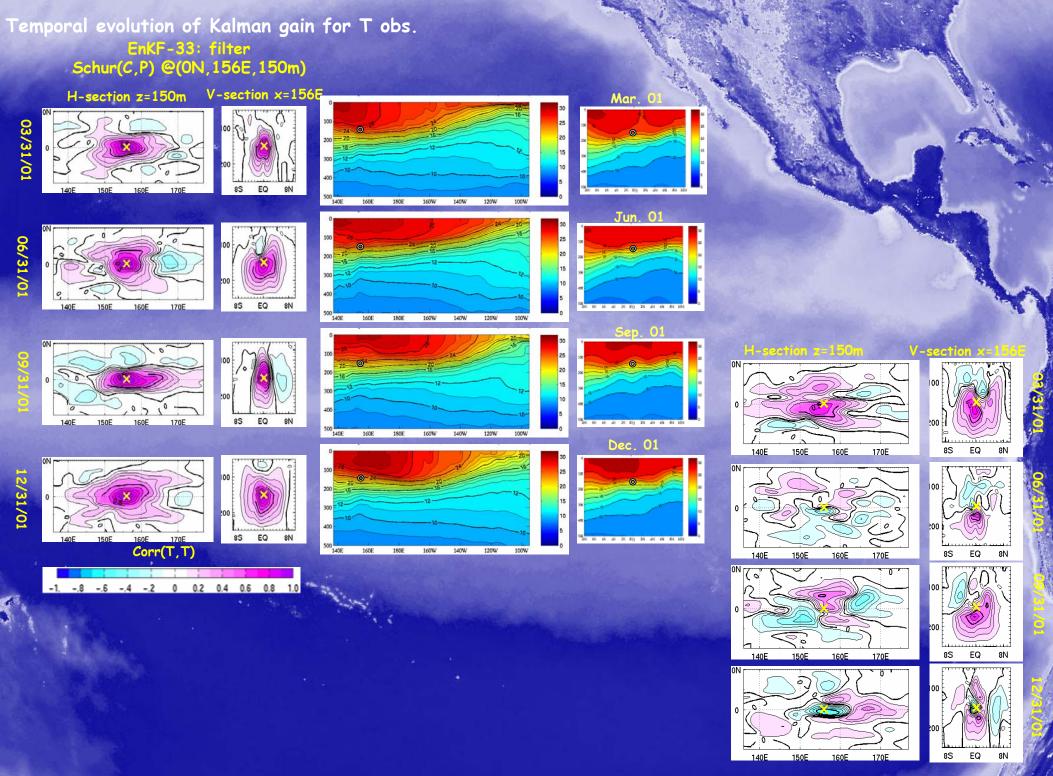
| β           | 1 (no time filter) | 0.01  | 0.005 | 0.0025 | 0.00125 |
|-------------|--------------------|-------|-------|--------|---------|
| RMS OMF (K) | 1.174              | 1.165 | 1.161 | 1.164  | 1.177   |

Table 1. RMS OMF difference for T as a function of the time-filtering parameter  $\beta$  in 30 day 17-member EnKF runs assimilating TAO and XBT observations (model timestep: 1200s).

### Effect of spatial filtering

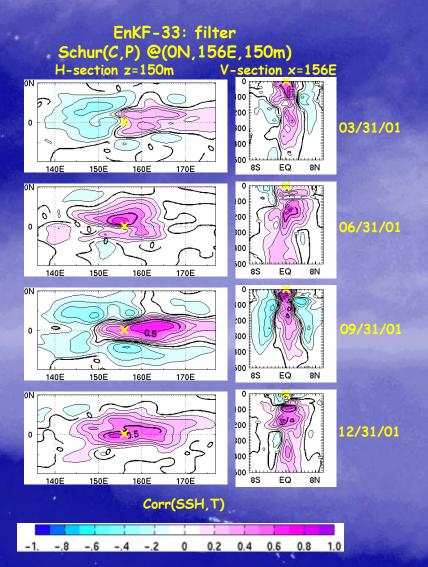
Example of marginal Kalman gain: T obs @(On,156E,150m) on 12/31/01 horizontal section through <T',T'> covariances

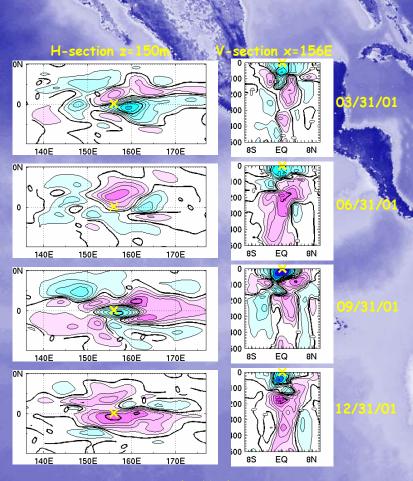



### Effect of spatial filtering

Example of marginal Kalman gain: T obs @(On,156E,150m) on 12/31/01 horizontal section through <T',T'> covariances

|                                       | EnKF-9 | EnKF-17 | EnKF-33 |
|---------------------------------------|--------|---------|---------|
| Unfiltered, globally supported (UGS)  | 0.36   | 0.46    | 0.67    |
| Unfiltered, compactly supported (UCS) | 0.51   | 0.58    | 0.75    |
| Filtered, compactly supported (FCS)   | 0.63   | 0.70    | 0.77    |

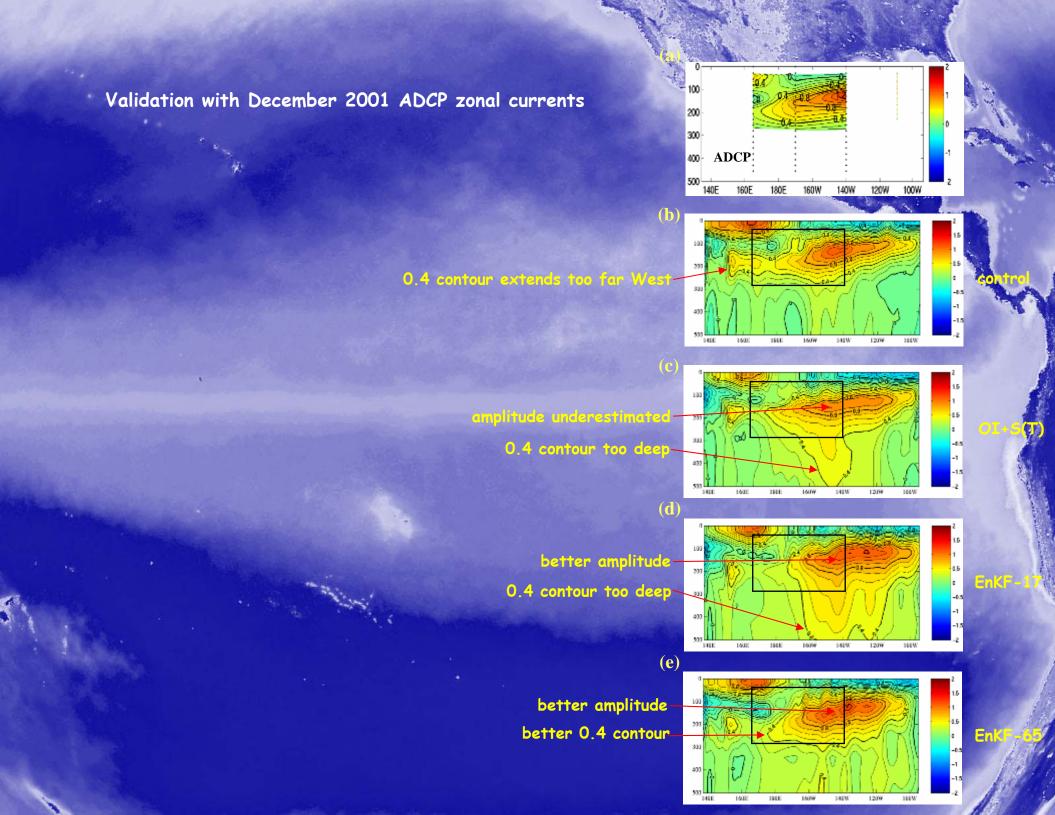

Table 2. Correlation of the horizontal section through the unfiltered globally supported (UGS) marginal gain for  $\mathcal T$  in the EnKF-65 run with the corresponding UGS, unfiltered compactly supported (UCS) and filtered compactly supported (FCS) horizontal sections through the corresponding marginal gain in the EnKF-9, EnKF-17 and EnKF-33 runs.

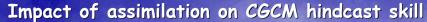

- · Filtering increases correlation of Kalman gain with corresponding raw (no filter, globally supported) gain from EnKF-65 run
- · Especially for very small ensembles, the filter "simulates" the covariances one would get from a larger ensemble



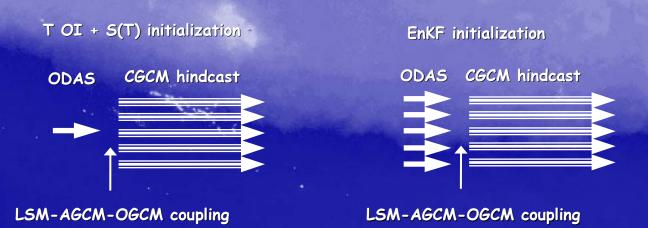
Corr(T,S)

# Temporal evolution of Kalman gain for SSH obs.

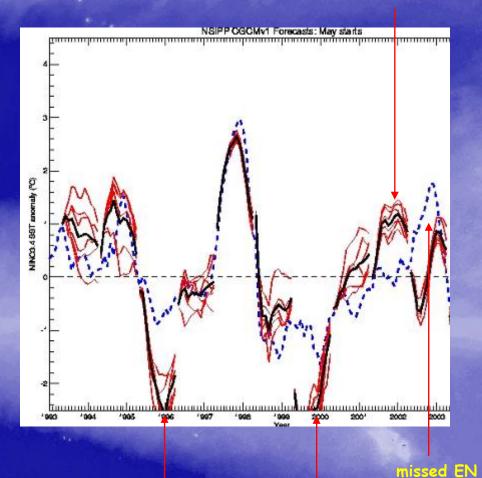



Corr(SSH,S)


#### SSH OMF and OMA statistics mean OMF SSH pass<mark>ive</mark> RMS OMF Contro mean OMA RMS OMA 0.05 -0.05 55H passiv -0.05 0 0.05 0.1 SSH active \$SH passi -0.05 0.05 0.05 -0.05 0.1 X SSH active \$SH passive 0.05 -0.05 0.05 -0.05 0.1 SSH passive SSH active EnKF-33 0.05 -0.05 0.05 -0.05 0 0.1 SSH active \$SH passi EnKF-65 0.05 -0.05 0 0.1 -0.05 0 0.05 0.1

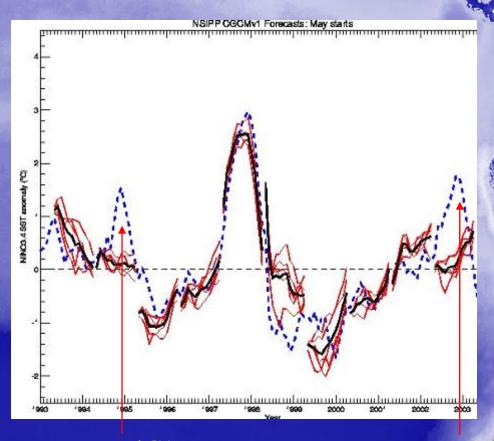
- · Control is most biased
- · OI partly corrects SSH bias but worsens RMS OMF
- · EnKF runs have no noticeable SSH bias





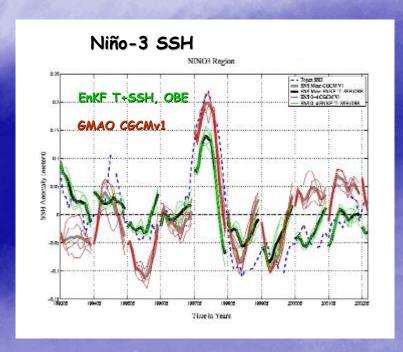

- 17-member EnKF
- Assimilate T + SSH for February-April of each year from 1993 to 2002
- · Couple OGCM to AGCM & LSM after running ODAS
- 12-month May start CGCM hindcasts initialized with ocean from EnKF runs (to save CPU time, EnKF-initializedCGCM hindcasts have only 5 ensemble member)
- · Assess impact of assimilation on SST hindcast skill
- Compare to history of production May-start hindcasts



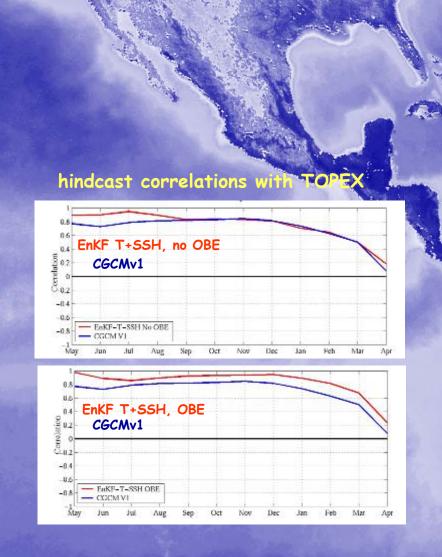





false LN alert false LN alert


May start Niño-3.4 SST hindcasts

### EnKF-17 initialization



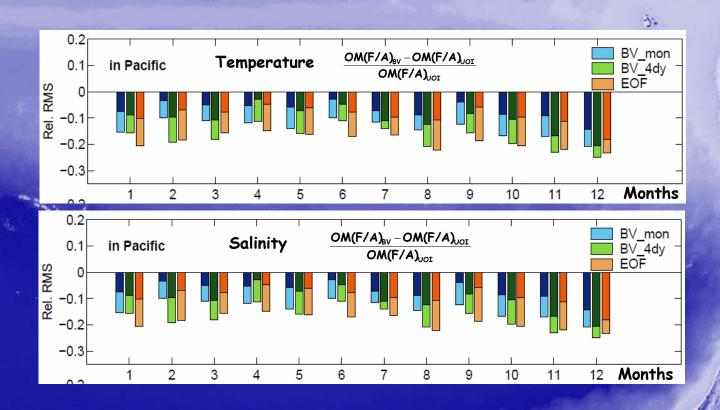

missed EN

missed








# **Conclusions**

Analysis speed up makes it practically feasible to use the EnKF in the production forecast initialization

Small ensemble EnKF can outperform production system provided background covariances are appropriately preconditioned

# Ongoing work

- More hindcast experiments with EnKF and Poseidon v4 (Robin Kovach)
- ODAS-2 testing and development: towards multi-model multi-resolution EnKF
- Investigating use of bred vectors (Shu-Chih Yang):
- in lieu of model EOFs in MvOI
- in EnKF system noise model and initialization

