JCSDA Science Workshop, May 1 – May 2, 2007

Progress On AVHRR-Based Global Vegetation Processing System (GVPS) and Products

Le Jiang¹, Dan Tarpley², Wei Guo¹, Felix Kogan², and Kenneth Mitchell³

> (¹IMSG at NOAA/NESDIS/STAR ²NOAA/NEDSIS/STAR ³NOAA/NCEP/EMC)

Summary

- Major enhancement made to the GVPS by implementing the adjusted cumulative distribution function (ACDF) method in operational algorithm, producing a consistent and quality improved long-term dataset.
- Products evaluated
- GVPS system currently in transition to operations
- Other progress

Jiang, L., J. D. Tarpley, K. E. Mitchell, W. Guo, B. H. Ramsay, and F. N. Kogan, Deriving near real time global green vegetation fraction from AVHRR-based global vegetation indices, to be submitted to *JHM*, 2007.
Jiang, L., J. D. Tarpley, K. E. Mitchell, S. Zhou, F. N. Kogan, and W. Guo, Adjusting for long term anomalous trends in NOAA's global vegetation index datasets, in review at *IEEE Trans. Geosci. Rem. Sens.*, 2007.

Major Enhancement to the GVPS

- ACDF adjustment applied to SMN from 1981 to current (using most stable quality data from 6-yr – benchmark climatology)

- Consequently, new SMN climatology derived (Max, Min NDVI), new GVF climatology derived (mean, STD for 24 years from 1982 to 2005)

Time series of weekly maximum, mean of top 1% highest, mean, and standard deviation of global smoothed NDVI (**un-adjusted**)

Evaluation

Maximum, mean, and standard deviation of global NDVI before and after ACDF adjustment

Class	Pixels%	Unadju	usted	Adjusted			
	-	Mean of	Trend from	Mean of	Trend from		
		Annual	1982 to	Annual	1982 to		
		Averaged	2003	Averaged	2003		
		NDVI		NDVI			
1	8.95%	0.312	+14.96%	0.332	-0.56%		
2	4.01%	0.262	+15.35%	0.282	-0.04%		
3	4.35%	0.237	+18.66%	0.255	+3.42%		
4	13.68%	0.185	+13.06%	0.184	+1.94%		
5	7.11%	0.161	+4.38%	0.133	-4.21%		
6	9.67%	0.263	+13.19%	0.285	-1.16%		
7 & 12	16.57%	0.199	+17.90%	0.217	+2.34%		
8&9	15.22%	0.113	+2.91%	0.128	-4.43%		
10	9.86%	0.129	+15.29%	0.080	+4.88%		
11	8.79%	0.088	+3.50%	0.100	-2.75%		
Overall	98.00%	0.186	+14.91%	0.189	+0.13%		

Comparison of un-adjusted and ACDF adjusted NDVI for different land classes

Vegetation Type

Land Surface Types:

1) Broadleaf-evergreen trees (tropical forest); 2) Broadleaf-deciduous trees; 3) Broadleaf and needle leaf tree;

4) Needle leaf evergreen trees; 5) Needle leaf deciduous trees (larch); 6) Broadleaf trees with ground cover (savanna); 7) Short groundcover (in perennial);

8) Broadleaf shrubs with perennial ground cover; 9) Broadleaf shrubs with bare soil;

10) Tundra (dwarf trees and shrubs with ground cover);

11) Bare soil; 12) Cropland (cultivated);

13) Glacial.

Dependence on Satellite Equator Crossing Time (ECT)

a. Satellite ECTs for the period 1982 to 2003;

Ability to detect vegetation anomaly – drought detection by Vegetation Condition Index (VCI)

- Zonal averaged time series comparison

$$VCI = \frac{ND - ND_{\min}}{ND_{\max} - ND_{\min}}$$

Globe lon=[-180.00, 180.00] lat=[-40.00, 40.00]

1990

1995

2000

2005

1985

20

- Regional comparison

Comparison of Vegetation Condition Index (VCI) resulted from un-adjusted and adjusted NDVI datasets over the CONUS (27N~53N, 127W~67W) in 2005 for weeks 20 (May), 29 (July) and 37 (September)

GVF derived from vegetation indices

a). Comparison of *directGVF* and *GVF*

 $directGVF = (NDVI - C_0) / C_1$

where $C_0 = 0.05$, $C_1 = 0.44$

$$GVF_{w} = GVF_{w} + [a(w,c,h) + b(w,c,h) \cdot VCI_{w}] \cdot \sigma_{GVF_{w}}$$

where a and b are derived from the SGVF vs. VCI relationship

$$(SGVF_{w} = \frac{GVF_{w} - \overline{GVF_{w}}}{\sigma_{GVF_{w}}}, VCI = \frac{NDVI - NDVI_{\min}}{NDVI_{\max} - NDVI_{\min}}$$

Average *a* and *b* for Northern Hemisphere and Southern Hemisphere

N. H. Class	a mean (or intcpt0 mean)	a std (or intcpt0 std)	b mean	b std	Intcpt100 mean	intcpt100 std	S. H. Class	a mean (or intcpt0 mean)	a std (or intcpt0 std)	b mean	b std	Intcpt100 mean	intcpt100 std
1	-3.748	0.194	0.071	0.003	3.375	0.135	1	-4.143	0.313	0.075	0.004	3.360	0.090
2	-3.406	0.356	0.068	0.005	3.405	0.182	2	-3.637	0.256	0.068	0.004	3.196	0.251
3	-3.306	0.671	0.069	0.007	3.581	0.229	3	-3.627	0.251	0.070	0.006	3.408	0.402
4	-3.082	0.657	0.068	0.004	3.768	0.399	4	-3.186	0.518	0.065	0.009	3.267	0.423
5	-2.783	1.008	0.066	0.012	3.783	0.524	5	-2.879	0.180	0.061	0.005	3.256	0.340
6	-3.525	0.204	0.067	0.005	3.220	0.393	6	-3.827	0.380	0.073	0.004	3.435	0.145
7+12	-3.273	0.371	0.069	0.004	3.620	0.096	7+12	-3.482	0.192	0.070	0.003	3.518	0.135
8+9	-3.224	0.176	0.069	0.004	3.678	0.214	8+9	-3.117	0.141	0.069	0.003	3.809	0.190
10	-2.952	0.634	0.072	0.007	4.258	0.549	10	-3.039	0.349	0.064	0.004	3.332	0.422
11	-3.263	0.260	0.070	0.005	3.733	0.280	11	-3.050	0.262	0.070	0.004	3.923	0.239
Mean	-3.256	0.453	0.069	0.006	3.642	0.300	Mean	-3.399	0.284	0.068	0.005	3.450	0.264

(Note:

$$GVF_{low} = \overline{GVF} + \text{intcpt0} \cdot \sigma_{GVF}$$

intcpt0=a,

intcpt100 = a + b*100)

$$GVF_{high} = GVF + \text{intcpt100} \cdot \sigma_{GVF}$$

Comparison of *directGVF* and *GVF* (for all land classes, CONUS)

Comparison of directGVF and GVF for week 24, 2000, global and CONUS

b) Vegetation Anomaly and Precipitation Anomaly

30-day accumulation ending 20060630

c) Remarks

Weekly GVF climo based on ACDF adjusted NDVI has higher NDVI mean value than the currently used monthly GVF in NCEP/EMC models (for obvious reasons)Both directGVF and GVF are provided as operational products, potentially keep one for simplicity after further evaluation.

Transition to Operations

- System Delivered to NESDIS/OSDPD (Mar'07)
- Operational testing, fine tuning, documentation currently underway (e.g., 1-month test running, training, reprocessing from 1982)
- Operational data availability to NCEP/EMC (expected by June 2007)
- Experimental data (climo and near real-time) available at NESDIS/STAR (POC: <u>Wei.Guo@noaa.gov</u>)
- Continuous improvement (open ended at NESDIS/STAR)

Future Work

- Sensitivity tests using the improved GVF products in EMC models
- Impact studies validation by ground data and summarize forecast skill statistics (currently carried out by *Cheng-Zhi Zou / Weizhong Zheng* at NESDIS/STAR)
- Other relevant efforts: GVI-x (global 4km NDVI capability using AVHRR-based data), MeteOp GVF (global 2km NDVI capability using MeteOp)

Backup Slides

1

Project Title: Improving the Global Vegetation Processing System (GVPS)

Pls and Co-Pls: Dan Tarpley and Le Jiang NWP Center Collaborators: Kenneth Mitchell

Accomplishments

• Major enhancement made to the AVHRRbased global vegetation processing system (GVPS), producing a consistent and quality improved long-term and near real-time vegetation dataset for operational use.

• GVPS currently in transition to operations

Future Plan

- Sensitivity & Impact studies in NWP models
- Continued improvements
- Improving components in LIS

30-day accumulation ending 20060531

Testing/Validation

1. Operations

- Regular weekly run

Non-interactive / Interactive mode: both OK.

- Reprocessing

For multiple satellites: using "Step-by-Step" reprocessing for 1136 weeks (from wk 35 of 1981 to wk 3 of 2007). Program runs fast without failure (taking total about 2 hr 40 min). OK.

- Other utilities

For the operational system, the existing built-in utilities are (more than) sufficient. No major issues encountered.

2. Documentation

Need finalization before delivery to ESPC (to be done by end Feb'07)

30-day accumulation ending 20060531

VCI_2006254_0637.GVI2