Assimilation of AMSR-E Land Products into the NOAH LSM

Paul R. Houser, Yan Luo and Xiwu Zhan JCSDA Workshop at UMD May 1, 2007

Outline

- Introduction
 - Ensemble Kalman Filter (EnKF)
 - LIS-based Noah LSM
 - AMSR_E soil moisture retrievals and CDF matching
 - SCAN in-situ observations
 - Soil Moisture Data Assimilation (DA) Experiments
 - Assimilation of unscaled AMSR_E observations
 - Assimilation of scaled AMSR_E observations
 - Validation of model simulations without DA and with DA against satellite and ground observations
 - Results and Discussion
 - Uncertainties and challenges in soil moisture estimation
 - Impact of DA on other land surface states and fluxes
- Current Work and Future Plans
 - Results of bias correction in Noah model within EnKF data assimilation
 - Preparing to assimilate global AMSR_E retrievals in T126/T382

Data assimilation scheme-- Ensemble Kalman Filter (EnKF)

LIS-based Noah LSM

Water Balanc

Data Assimilation Modules

(DI,EKF,EnKF)

- Noah Land Surface Model (NOAH) Model results with observation-corrected meteorological forcing-NLDAS
- Upper 2cm, 1/8 degree, 30min Total 464x232 grid points on
- NLDAS domain

NASA Land Information System

Inputs

Topography,

Soils

Land Cover,

Vegetation

Properties

Meteorology

Snow

Temperature

Moisture

Snowpack

Properties Paul R. Houser

Ops

Natural

ay 2007, Page 4

AMSR_E soil moisture retrievals and CDF matching

- Advanced Microwave Scanning Radiometer (AMSR)
- Official AMSR-E Soil moisture dataset available since June 18, 2002
- Upper about 2cm, global, ~twice daily at 06Z, 12Z

Surface Soil Moisture [v/v%] 4yr Climatology

Noah

AMSRE

AMSR-E SM 4-year Climatology 51N 48N 45N 42N 39N 36N 33N 30N 27N 115₩ 95₩ 120₩ 11′0₩ 105₩ 100₩ 90W 85W 8ດ່າມ -75₩ 7ó₩ 40 45 50

Difference (NOAH SM - AMSRE SM) 51N 48N 45N 42N 39N 36N 33N 30N 27N 120₩ зów 115W 110₩ 105₩ 100₩ 95₩ 8ŚW 80່₩ 75W 70₩ -7.5 -10 -2.5 2.5 5 7.5 10 12.5 15 -5

Noah - AMSRE

er, 21 May 2007, Page 6

Bias correction-CDF matching

SCAN in-situ observations

- Soil Climate Analysis Network
 (SCAN)
- •Upper about 5cm, point scale, hourly

Soil Moisture Data Assimilation and Validation

Soil Moisture Data Assimilation and Evaluation

Experimental Design

Long-term data assimilation simulations

1/8th Degree (~15 km) over central North America runs from 18 June 2002 to 17 June 2006

Three experiments:

- 1. Control run -- Noah LSM simulation
- 2. EnKF DA with unscaled AMSR-E SM (two boxes only)
- 3. EnKF DA with scaled AMSR-E SM (two boxes only)

Assimilation of AMSR-E soil moisture data

1/2 hour time step, 3 hourly output, and 5 ensemble members

Data assimilation frequency is twice daily at 06Z and 18Z, with 2922 assimilation events over a fixed time period, from 18 June 2002 thru 17 June 2006. DA will not be "turned on" until observation is available we take the ensemble mean as first guess for next time step initial conditions

EnKF Assimilation of AMSR-E SM Retrievals

Noah LSM RUN

AMSR-E SM

EnKF Assimilation(TEST2)

EnKF Assimilation of Scaled AMSR-E SM Retrievals

Scaled AMSR-E SM 20020710a

EnKF Assimilation (TEST2)

Data Assimilation Evaluation against Observations at Two SCAN Sites

Assimilation of Unscaled AMSR-E Soil Moisture

- Model simulations, satellite and ground observations are significantly different from one another (much uncertainty in soil moisture estimation).
- CDF matching provides compatible/corrected AMSR-E soil moisture to Noah LSM soil moisture.
- Resulting estimates from EnKF are sensitive to observations applied in DA. Therefore, the accuracy of the resulting estimates would be limited by uncertainty in observations and model. In this study, the biased AMSR-E data degrade the performance of EnKF DA.
- EnKF DA validation and real application are challenging due to mismatched scales in model simulations, satellite observations and in situ observations.

Ames, Iowa

SM (%v/v) (6/18/2002 -6/17/2006)	SCAN SM ~5cm	AMSR-E ~2cm	Scaled AMSR-E 2cm	NOAH 2cm	AMSR-E SM DA ~2cm	Scaled AMSR-E SM DA ~2cm
Mean	29.42	15.35	21.11	21.33	17.57	21.32
Standard Deviation	6.74	2.45	4.24	5.40	3.77	4.11
Bias (wrt AMSR-E SM)	14.07	0	5.76	5.98	2.22	5.97
Correlation (wrt AMSR-E SM)	0.128	1.00	0.915	0.176	0.367	0.436
Bias (wrt SCAN SM)	0	-14.07	-8.31	-8.09	-11.85	-8.1
Correlation (wrt SCAN SM)	1.00	0.128	0.008	0.247	0.364	0.311

Walnut Gulch, Arizona

SM (%v/v) (6/18/2002 -6/17/2006)	SCAN SM ~5cm	AMSR-E ~2cm	Scaled AMSR-E 2cm	NOAH 2cm	AMSR-E SM DA ~2cm	Scaled AMSR-E SM DA ~2cm
Mean	2.73	11.27	14.04	13.24	11.90	13.65
Standard Deviation	3.04	1.04	3.88	4.06	2.36	3.71
Bias (wrt AMSR-E SM)	-8.54	0	2.77	1.97	0.63	2.38
Correlation (wrt AMSR-E SM)	0.46	1.00	0.98	0.66	0.49	0.83
Bias (wrt SCAN SM)	0	8.54	11.31	10.51	9.17	10.92
Correlation (wrt SCAN SM)	1.00	0.46	0.43	0.60	0.30	0.43

Impact of EnKF DA:

Corr1=corr(NOAH, EnKF+ Unscaled AMSR) Corr2=corr(NOAH, EnKF+ Scaled AMSR)

Ames, Iowa

Impact of EnKF DA:

Corr1=corr(NOAH, EnKF+ Unscaled AMSR) Corr2=corr(NOAH, EnKF+ Scaled AMSR)

Current Work and Future Plans

Bias Correction Method (Dee and Todling's, 1998, 2000)

Estimating Bias:

$$b_t^f = \mu b_{t-1}^a$$

$$b^a = b^f - L[y^o - (Hx^f - Hb^f)]$$

$$L = P^{bias} H^T (HP^{bias} H^T + HP^f H^T + R)^{-1}$$

Correcting Bias:

$$\widetilde{x}^{f} = x^{f} - b^{a}$$

$$x^{a} = \widetilde{x}^{f} + K[y^{o} - H\widetilde{x}^{f}]$$

$$K = P^{f}H^{T}(HP^{f}H^{T} + R)^{-1}$$

a. Full Scheme

 $P^{bias} = \gamma * P^{f}$

b. Approximate Scheme

 $L = \alpha * K$

 $0 < \mu, \gamma, \alpha \le 1$ tunable bias correction parameters

Bias correction experiment

- Implement the bias estimation and correction scheme in LIS-Noah and assimilate AMSR-E data
- Assume that AMSR-E soil moisture observations are unbiased and represent the real land surface conditions, whereas the Noah has its own biased climatology.
- Assimilation period: 6/1/2005—8/31/2005. Spin up from 1/1/2000 till 6/1/2005, and restart from 6/1/2005 and start data assimilation
- Running over the NLDAS domain
- 20 ensemble members
- Experiments:
 - DA runs without bias correction scheme (No BEC)
 - DA runs with Full bias correction scheme (Full BEC)
 - DA runs with Approximate correction scheme (Approx BEC)

Bias correction comparison

 Model error ≈ Noah model forecast - AMSR_E retrieval

Bias correction comparison

Mean Top-Layer Soil Moisture (v/v%), JJA 2005

Table. Model Error Comparison of Surface Soil Moisture (Units: v/v%).

Experiments		Model Error		RMSE		
	NLDAS	IA_BOX	AZ_BOX	NLDAS	IA_BOX	AZ_BOX
No bias correction	-0.6684	-0.9782	-1.9523	2.5493	2.3058	2.5953
Full bias correction	-0.4279	-0.4098	-0.5683	1.8033	1.3582	1.3733
Approximate bias correction	-0.5556	-0.5742	-0.6538	2.0257	1.6398	1.5266

http://crew.iges.org

Bias correction comparison

Table. Model Error Comparison of Surface Soil Moisture (Units: v/v%).

Experiments		Model Error		RMSE		
	NLDAS	IA_BOX	AZ_BOX	NLDAS	IA_BOX	AZ_BOX
No bias correction	-0.6684	-0.9782	-1.9523	2.5493	2.3058	2.5953
Full bias correction	-0.4279	-0.4098	-0.5683	1.8033	1.3582	1.3733
Approximate bias correction	-0.5556	-0.5742	-0.6538	2.0257	1.6398	1.5266

N http://crew.iges.org

Summary of Results

- This bias correction algorithm can statistically estimate and correct Noah model errors without changing model itself.
- Our results have shown that bias correction at every analysis cycle has a significant positive impact on the EnKF.
- Additional computational cost is insignificant when the this simplified bias estimation and correction procedure are added in the EnKF DA procedures. Approximated BC scheme should be more efficient.

Future Plans

- Prepare for global data assimilation: testing in an operational testbed-Expand to assimilate Global AMSR_E retrievals intoT126/T382 spectral Noah LSM
- Improve the performance of the ensemble Kalman Filter application
 - Expand AMSR-E scaling philosophy using the Copula statistical tool
 - Optimize initial perturbations for EnKF assimilation
- Directly assimilate SCAN soil moisture as a supplement of current study

Current LIS-Noah-EnKF

- ✓ NLDAS domain
- ✓ 0.125 lat/lon resolution (464, 224)
- ✓ Noah LSM
- Bias correction to observed AMSR with CDF matching
- Bias correction to model errors

Anticipated in Future LIS-Noah-ENKF

- Global
- T126 CFS/T382GFS
- Noah LSM
- Include above implementations
 - ** Not yet available

Global Data Assimilation

