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LIS Background

* LIS Data Assimilation Capabilities (Joint with
GMAO, AFWA, USDA and NESDIS)

* Ongoing Work (Not covered in this talk)

— LIS/WRF Coupled Benchmarking (Joint with
NCAR,AFWA)

— LIS/GFS Coupling (Joint with NCEP)




- LIS Background:

| LIS as an Earth System
“¥ Model Land Component
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Sequence of Component
Interactions for a sequential
assimilation cycle

LIS Observations Data Assimilation
Simulation Module Module

Run land surface
model (Forecast)

LSM_State ( X, )

Xji1 = fk(f(z? wy)

Read Observations

OBS_State (Yki+1)

Analysis

LSM State( ka )

X1 = Xy + Ky — Hen(%14))
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LIS Forcing Observations Perturbation Data Assimilation
Simulation Module Module Module Module
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Data Assimilation Experiments
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To showcase the interoperable use of multiple data assimilation
algorithms, land surface models and observations

Two sets of assimilation experiments
® Soil Moisture OSSEs - using different LSMs
® Snow OSSEs - different types of snow observations
OSSE setup
Control/Truth Run
Degraded/Open Loop Run
Generate synthetic observations

Assimilate synthetic observations into the open loop run



. '.H‘I A= :...-:#"__:-rlr...'

\ il Data Assimilation Experiment Setup

?ﬁ h,
‘ .xé 4“ ,6% Soil Moisture OSSEs
Modeling domain: CONUS

Catchment and Noah LSMs
April 1,2003 to December [,2003.
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Control/Truth runs usin§ GDAS forcing (spun ™

up from January |, 2000

OpenlLoop runs using GEOS forcing

Synthetic surface soil moisture observations generated from the truth runs by
simulating typical retrieval errors associated with microwave sensors

® masking of data for dense vegetation

® data masks in the presence of rain/snow
® random noise of 3% (volumetric) error
Assimilation runs

® Assimilate synthetic obs into the open loop runs, once a day at 12Z

® Simulations using the EnKF




Time Series of RMSEs for Soil
Moisture OSSEs
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Root Zone

Improvement Metric

\> + (RMSE(OpenLoop) - RMSE(EnKF))

for soil moisture OSSEs
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Data Assimilation Experiment Setup
Snow OSSEs

® Modeling domain: North America

SWE Assimilation using EnKF and and SCA
Assimilation using a rule based Direct Insertion
(Rodell and Houser, 2004)

October 1,2003 to June 1,2004

Control/Truth runs using GDAS forcing (spun up
from January |, 2000) and Catchment LSM.

OpenLoop runs using GEOS forcing and Noah LSM

Synthetic SCA observations flagged using cloud cover masks from the MODIS Level 3
product (Hall et al, 2002)

Synthetic SWE observations generated by
® data masks for dense vegetation
® random noise of |0mm error and 10mm minimum and 200mm maximum cutoffs
Assimilation runs
SCA obs into the Open Loop run once a day at |2Z using the rule-based DI

SWE obs into the Open Loop run once a day at 12Z using the EnKF
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Time Series Comparisons of Snow fields
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\ Time Series Comparisons of Snow fields
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- Spatially distributed variance of
| Normalized Innovations
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® A flexible, reusable, extensible framework for land surface data
assimilation

® System supports the use of
multiple assimilation algorithms
multiple LSMs
multiple observation types
different perturbation algorithms

Data Assimilation framework also includes a generic diagnostics
component

High Performance Infrastructure in LIS provides adequate support for
computationally intensive data assimilation simulations




Future DA Enhancements

Addition of an online bias correction component

Assimilation of other observation types (LST),
combined use of multiple observations

Support for variational, smoothing algorithms

Addition of a generic optimization component
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| V %%laola hlgh performance, high
"resb ttion (1km) land surface modeling
and data a55|m|Iat|on system.

Benefits: Enable improved land-atmosphere
understanding, hydrological and climate
prediction, transfer research to - |
application. | 3 Daten

Assimilation

Land Modeling: Use multiple state-of-the- , ‘

art water-energy-carbon land surface

models (LSM’s, e.g., Noah, Catchment,
CLM, etc.).

Land Observation: Use best available
observed forcing from surface and
remote sensing platforms.

Data Assimilation: Merge a wide range of
surface information to constrain and
improve model trajectory.

Applications: Weather and climate model
initialization and retrospective coupled
modeling, Flood and water resources
forecasting, Precision agriculture,
Military mobility assessment, etc.

\and Information System (LIS)




. LIS Modeling Approach
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