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• LIS Background
• LIS Data Assimilation Capabilities (Joint with 

GMAO, AFWA, USDA and NESDIS) 
• Ongoing Work (Not covered in this talk)

– LIS/WRF Coupled Benchmarking (Joint with 
NCAR, AFWA)

– LIS/GFS Coupling (Joint with NCEP)
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LIS Software Structure
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Data Assimilation 
Abstractions in LIS
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Sequence of Component 
Interactions for a sequential 

assimilation cycle
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Sequence of Component Interactions for a cycle 
of EnKF
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Data Assimilation Experiments

• To showcase the interoperable use of multiple data assimilation 
algorithms, land surface models and observations

• Two sets of assimilation experiments

• Soil Moisture OSSEs - using different LSMs

• Snow OSSEs - different types of snow observations

• OSSE setup

• Control/Truth Run 

• Degraded/Open Loop Run

• Generate synthetic observations

• Assimilate synthetic observations into the open loop run



Data Assimilation Experiment Setup
Soil Moisture OSSEs

• Modeling domain: CONUS

• Catchment and Noah LSMs

• April 1,2003 to December 1, 2003.

• Control/Truth runs using GDAS forcing (spun 
up from January 1, 2000)

• OpenLoop runs using GEOS forcing 

• Synthetic surface soil moisture observations generated from the truth runs by 
simulating typical retrieval errors  associated with microwave sensors

• masking of data for dense vegetation

• data masks in the presence of rain/snow

• random noise of 3% (volumetric) error

• Assimilation runs 

•  Assimilate synthetic obs into the open loop runs, once a day at 12Z

• Simulations using the EnKF



Time Series of RMSEs for Soil 
Moisture OSSEs

Catchment Noah

R
oo

t 
Z

on
e

Su
rf

ac
e 

La
ye

r



Improvement Metric 
(RMSE(OpenLoop) - RMSE(EnKF)) 

for soil moisture OSSEs
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Data Assimilation Experiment Setup
Snow OSSEs

• Modeling domain: North America

• SWE Assimilation using EnKF and and SCA 
Assimilation using a rule based Direct Insertion 
(Rodell and Houser, 2004)

• October 1, 2003 to  June 1, 2004

• Control/Truth runs using GDAS forcing (spun up 
from January 1, 2000) and Catchment LSM. 

• OpenLoop runs using GEOS forcing and Noah LSM

• Synthetic SCA observations flagged using cloud cover masks from the MODIS Level 3 
product (Hall et al, 2002)

• Synthetic SWE observations generated by

• data masks for dense vegetation 

• random noise of 10mm error and 10mm minimum and 200mm maximum cutoffs

•  Assimilation runs

• SCA obs into the Open Loop run once a day at 12Z using the rule-based DI

• SWE obs into the Open Loop run once a day at 12Z using the EnKF



Improvement Metric for snow OSSEs
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Time Series Comparisons of Snow fields 
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Time Series Comparisons of Snow fields 
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Spatially distributed variance of 
Normalized Innovations
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Influence of ensemble 
size on filter accuracy 
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Fig. 10. Comparison of the total RMS error (in units of volumetric fractions) for the surface layer and

root zone, for simulations using different ensemble sizes.
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Summary

• A flexible, reusable, extensible framework for land surface data 
assimilation

• System supports the use of 

• multiple assimilation algorithms 

• multiple LSMs

• multiple observation types

• different perturbation algorithms

• Data Assimilation framework also includes a generic diagnostics 
component

• High Performance Infrastructure in LIS provides adequate support for 
computationally intensive data assimilation simulations



Future DA Enhancements

• Addition of an online bias correction component

• Assimilation of other observation types (LST), 
combined use of multiple observations

• Support for variational, smoothing algorithms 

• Addition of a generic optimization component 



Land Information System (LIS)

Objective: A global, high performance, high 
resolution (1km)  land surface modeling 
and data assimilation system.

Benefits: Enable improved land-atmosphere 
understanding, hydrological and climate 
prediction, transfer research to 
application.

Land Modeling: Use multiple state-of-the-
art water-energy-carbon land surface 
models (LSM’s, e.g., Noah, Catchment, 
CLM, etc.). 

Land Observation: Use best available 
observed forcing from surface and 
remote sensing platforms. 

Data Assimilation: Merge a wide range of 
surface information to constrain and 
improve model trajectory.

Applications: Weather and climate model 
initialization and retrospective coupled 
modeling, Flood and water resources 
forecasting, Precision agriculture, 
Military mobility assessment, etc.
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