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Brief History

Vapnik (1974, 1979) created the idea of creating
separating hyperplanes with optimal margin.
In addition, important work in the context of reproducing
kernels, related to SV methods, has been done by Wahba
and co-workers.
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Brief History

In the 1990’s three ideas were developed that made
support vectors useful to a large number of applications.

Mercer kernels were used to generalize from optimal
hyperplanes to nonplanar decision surfaces. This is done
by nonlinearly mapping into some other (possibly
high-dimensional) space.
Optimal margin algorithm is generalized to non-separable
problems by the introduction of slack variables in the
statement of the optimization problem.
Different SV classifiers constructed by using different
kernels (polynomial , RBF, neural net) extract the same
Support Vectors.
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Example of the basic idea behind SV regression

Cortes, C.; and Vapnik, V. 1995. Support Vector Networks.
Machine Learning 20:273-297.

In this paper, the question asked was how many inputs will
it take to separate a 2-class data set with a second-order
polynomial boundary. We can simply employ p inputs of
the form x1, x2, . . . , xp, and allow a nonlinear model to map
those to a binary output.
Alternately, we could employ a linear model that, in
addition to the p inputs, also includes another p inputs of
the form x2

1 , x2
2 , . . . , x2

p , plus another p(p−1)
2 inputs of the

form x1x2, x1x3, ..., xpxp−1.
That amounts to a total of p(p+3)

2 inputs, feeding into a
linear classifier.
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Example of the basic idea behind SV regression

The data are mapped into a larger-dimensional space
where the decision boundary is a linear hyperplane. This is
the main idea behind Support Vector Machines. One
criterion for fitting the hyperplane through the data is to
simply select the hyperplane that maximizes the geometric
margin between the vectors of the two classes.
The main advantage of this choice is that it requires only a
portion of the training set, namely those closest to the
hyperplane, often referred to as support vectors.
In practice, SVMs actually construct a linear decision
hyperplane first, and then proceed to map the results to a
high-dimensional feature space.
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Some Applications of Support Vectors to Radar Data I

Trafalis, T.B., A. White, B. Santosa and M.B. Richman, 2002.
Data mining techniques for improved WSR-88D rainfall estimation.
Computers and Industrial Engineering, 43, 775-786, 2002.

Trafalis, T. B., M. B. Richman and B. Santosa, 2002.
Prediction of rainfall from WSR-88D radar using support vector regression.
Intelligent Engineering Systems Through Artificial Neural Networks, ASME Press, 12, 639-644. (Novel Smart
Engineering System Design Award).

Trafalis, T.B., B. Santosa and M.B. Richman, 2003.
Prediction of rainfall from WSR-88D radar using kernel-based methods.
International Journal of Smart Engineering System Design, 5, 429-438.

Trafalis, T.B., H. Ince and M.B. Richman, 2003.
Tornado detection with support vector machines.
Computational Science - ICCS 2003, Peter M.A., Sloot, David Abramson, A. Bogdanov, Jack J. Dongarra, A.
Zomaya and Yuriy Gorbachev, eds., (Int’l conference Saint Petersburg Russian Federation, Melbourne
Australia, June 2-4, 2003 Proceedings), Springer, 202 - 211.

Trafalis, T.B., B. Santosa and M.B. Richman, 2004.
Rule-based support vector machine classifiers applied to tornado prediction.
Computational Science-ICCS 2004, Lecture notes in Computer Science, series LNCS 3036, part III,
Springer, 678-684.
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Some Applications of Support Vectors to Radar Data II

Trafalis, T.B., B. Santosa and M.B. Richman, 2005.
Learning networks in rainfall estimation.
Computational Management Science, 2, 229-251.

Trafalis, T.B., B. Santosa and M.B. Richman, 2005.
Feature selection with linear programming support vector machines and applications to tornado prediction.
WSEAS Transactions on Computers, 4, 865-873.

Trafalis, T.B., B. Santosa and M.B. Richman, 2005.
Learning networks for tornado forecasting: a Bayesian perspective.
Data Mining VI, WIT Transactions on Information and Communication Technologies, 35, 5-14.

Son, H-J, T.B. Trafalis and M.B. Richman, 2005.
Determination of the optimal batch size in incremental approaches: An application to tornado detection.
Proceedings of International Joint Conference on Neural Networks, IEEE, 2706-2710.

Trafalis, T.B., M.B. Richman and B. Santosa: 2006.
Learning networks for tornado detection.
International Journal of General Systems, 35, 93 - 107.
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Introduction to Kernel Methods

Kernel methods play a major role in Machine Learning.
They provide a simple framework for manipulating
nonlinear relationships.
Require modest computational resources.
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The Mercer Kernels

A kernel is a continuous symmetric real-valued function
defined on compact subsets of Rn, k : (x , y) 7→ k(x , y).
A Mercer kernel is a nonnegative definite kernel.
The domain of a Mercer kernel is called the input space.
The quantity k(x , y) can be used to represent measures of
angle and measures of distance.
Angles and distances are between inputs mapped in a
higher dimensional Hilbert space H.
The Hilbert space H is called the feature space.
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The Kernel Trick

Mercer’s theorem suggests a particular decomposition of
Mercer kernels.
A Mercer kernel can be expressed as a dot product
between two inputs mapped in the feature space,
k(x , y) = 〈φ(x) · φ(y)〉.
Explicit knowledge of the map φ and the feature space is
not required. The only thing of importance is the kernel
itself.
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Context of Supervised Learning

Some problems in complex systems require the
determination of some unknown and non-trivial rules for
predicting the future system state.
Algorithms in Machine Learning can automatically search
for complex prediction patterns, such as in classification
and regression problems.
Classification and regression problems are supervised
learning tasks in the sense that a learning machine is
initially trained on known examples before being used to
analyze future data coming from the same input source.
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Linear Support Vector Regression

Data points xi are elements of Rn. Their corresponding
targets yi are in R.
We need to find a prediction function f such that for each
pair data-target (xi , yi) we have f (xi) ≈ yi .
f should be found such that:

|f (xi)− yi | 6 ξi for every xi
ξi > 0 for every xi

where ξi are slack variables.
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Linear Support Vector Regression

the prediction function f belongs to a class of functions
denoted by F such that:

F := {x ∈ Rn 7→ 〈w · x〉 + b : ‖w‖ ≤ B} ,

where B > 0, w =
∑

j αjxj , and αj ∈ R.
The constraints become:∣∣∣∑j αj < xj , xi > +b − yi

∣∣∣ 6 ξi for every xi

ξi > 0 for every xi
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Nonlinear Support Vector Regression

Consider the kernel k : Rn × Rn → R,
Induce a new Hilbert space H and a map φ : Rn → H such
that k(x , y) = 〈φ(x), φ(y)〉H for any x and y in Rn

F becomes:

F := {x ∈ Rn 7→ 〈w · φ(x)〉H + b : ‖w‖H ≤ B}

where w =
∑

j αjφ(xj).
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Nonlinear Support Vector Regression

By kernelizing the previous constraints we obtain:∣∣∣∑j αjk(xj , xi) + b − yi

∣∣∣ 6 ρi + ξi for every xi

ξi > 0 for every xi

The problem is formulated for α, ξ and b as variables.
The SVM literature proposes an objective function that
reduces the slack variables and the expected value of
|f (xi)− yi |. Hence, we need to minimize the quantities |b|,
|ξ|, and ‖w‖H.
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Nonlinear Support Vector Regression

The quadratic programming that needs to be solved is:

minimize αT Kα + CξT ξ + b2

subject to |Kα + b1− y | ≤ ξ

where C > 0, (K)ij = k(xi , xj), and y is the vector which
entries are the yi ’s.
The optimal solution (α∗, b∗) of this problem gives the
following prediction function:

f : x 7→
∑

j

α∗j k(xj , x) + b∗.

The vectors xj for which the values α∗j are nonzero are
called support vectors.
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Voronoi Tessellation

Due to the limitation imposed by the number of data points,
we cannot apply SVR on the whole data set.
Applying a Voronoi tessellation on the data set.
Apply the SVR in each cell.

Voronoi Tessellation:
For any discrete set S of points in Euclidean space
and for almost any point x, there is one point of S closest to x.
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Voronoi Tessellation

The set of all points closer to a point c of S is the interior of
a convex polytope (in some cases unbounded) called the
Dirichlet domain or Voronoi cell for c.
The set of such polytopes tessellates the whole space, and
is the Voronoi tessellation corresponding to the set S
(figure 1).

Figure: Voronoi tessellation for (127W,145E) and (23N,42N)L. Leslie, M. Richman, H. Mansouri, C. Shafer Application of Support Vector Regression to Scatterometer Data
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WindSat Data

WindSat is a polarimetric microwave radiometer developed
and built by NRL.
The primarily objective of WindSat is to measure the ocean
surface wind vector (speed and direction).
The secondary objective is the measurements of sea
surface temperature, rain rate and water vapor.
Each orbit takes about 2 hours.
During each orbit, over 120,000 observations are collected.
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Data Set

EDR Data from January 01, 2005 inside the region
(127W,145E) and (23N,42N).
After we took off all data points that have some missing
information, we end up with 13500 points.
The SVR allows only 1 output, hence, we need to find 2
prediction functions; one for the speed and one for the
direction.
SVR needs to be applied on continuous data. However, the
direction is modulo 2π. Therefore, we need to transform
the wind speed and direction to the U-V components.
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Experiments

The input vector contains longitude, latitude, SST, water
vapor, cloud liquid water, rain rate. The target is either the
U-component or the V-component.
Before, applying the SVR, we needed to change the origin
for the longitude to get a continuous transition from 180E
to 180W.

Linear K (xi , xj) =< xi , xj >. RBF K (xi , xj) = e−
‖xi−xj‖2

σ2 .

Kernel Attributes
2 L Linear Longitude and latitude
2 RBF RBF Longitude and latitude
All L Linear Long., lat., SST, water vapor, cloud liquid water, & rain rate
All RBF RBF Long., lat., SST, water vapor, cloud liquid water, & rain rate

Table: The set of experiments
L. Leslie, M. Richman, H. Mansouri, C. Shafer Application of Support Vector Regression to Scatterometer Data
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Results
U and V predictions’ errors

U-component V-component
MAE MSE MAE MSE

2 L 2.03 12.70 1.93 7.77
All L 2.06 12.84 1.96 7.82

2 RBF 1.10 5.28 0.86 2.84
All RBF 1.15 20.99 .72 2.70

Table: U and V predictions’ errors
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Results
The SVR solution for the U-component-
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Results
The SVR solution for the V-component-
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Results
The Contour Plot for the Observed U-component-

Figure: The Contour Plot for the Observed U-component -All RBF-
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Results -The Contour Plot for the Predicted U-component-

Figure: The Contour Plot for the Predicted U-component -All RBF-
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Figure: The Contour Plot for the Observed V-component -All RBF-
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Conclusion and Future Plan

Fewer than 8% of the data points (1000 support vectors
out of 13540 data points) are needed to predict the U and
V for the other data points.
The support vectors reconstruct the ocean surface wind
vector field with high accuracy (Correlation rate over 93%).
Developed a MATLAB Toolbox able to achieve training
speeds reaching 3000 vectors per seconds, which is
roughly 11 millions vectors per hour. The code can be
even faster if it is vectorized or pipelined.
To use the points selected by the SVM and assimilate
those into numerical weather prediction models.
To use different data sets from different satellites.
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Project Summary

Application of Support Vector Regression to 
Scatterometer Data 

PIs and Co-PIs: M. Richman and L. 
Leslie

NWP Center Collaborators: JCSDA
Accomplishments 

•Fewer than 8% of the data points 
(1000 out of 13540) are needed to 
predict the U and V for the other data 
points.

•The support vectors reconstruct the 
ocean surface wind vector field with 
high accuracy (Correlation rate over 
93%).

Future Plan
•To use the points selected by the SVM and assimilate 
those into numerical weather prediction models.

•To use different data sets from different satellites.
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