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Outline

Introduction

Modeling environment

Old and new results 

• Radiative transfer solver errors MW and IR
• Cloud/precipitation overlap
• Cloud microphysics
• 3D errors

Future plans



Assessing error characteristics: What are the 
challenges?

• Representativeness of forecast model
• Scale of forecast model
• Gas absorption models
• Representation of particle scattering
• Surface emissivity models
• Radiative transfer solver 
• Instrument characteristics
• Various components need to go together
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Simulation example forward and adjoint



RT solver errors under scattering conditions in MW



RT solver errors under scattering conditions in IR

• WRF 4 km resolution run 

• SOI IR 32-stream versus 2-stream

• Simulate typical high spectral resolution IR instrument 
(AIRS/IASI etc…)

• Ice clouds (Bryan Baum/Ping Yang)

• Liquid clouds (Mie)









Bias monitoring infrared (cloud-free) 



Different cloud/precipitation overlap models

• Conventional approach uses cloud cover to subdivide NWP 
pixel in cloudy/precipitation

• New approach derives two/three optimal columns based on 
subscale distribution of precipitation columns with similar 
optical properties

• Numerically efficient (2-3 radiative transfer calculations per NWP 
grid point)

• Highly accurate against independent column/MR-overlap 
reference

• Optimal approach reduces errors due to cloud overlap from 
maximum values of 5-10 K to values < 1K



Different cloud/precipitation overlap models

Currently 
operational at 

ECMWF

New scheme with 
much better error 

characteristics
O’Dell, Bauer, Bennartz, 

JAS, 2006, in press
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Slant path errors
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Where are we?

• CRTM and integrated yet modular radiative transfer 
modeling approach is a big step forward.

• We got bits and pieces together, but consistent 
framework needs to be developed.



Future plans

• Further test and integrate SOI with other models in 
CRTM

• Develop formulation for observation error including all 
modeling errors, RT solver, ice scattering, cloud overlap, 
3 D effects etc. 

• Bias statistics for various sensors under cloud 
precipitating conditions for different cloud microphysics 
schemes.


