

Improved Spectroscopy for Microwave and Infrared Satellite Data Assimilation

Vivienne Payne, Jean-Luc Moncet, Tony Clough

JCSDA 5th Workshop on Satellite Data Assimilation May 1-2 2007

Acknowledgements

• AER

Mark Shephard, Jennifer Delamere, Karen Cady-Pereira and Eli Mlawer

• University of Wisconsin

Hank Revercomb, Bob Knuteson and Dave Tobin

• JPL

TES Algorithm Development Team

- Paris XII, Creteill Jean Michel Hartmann's Group
- ANL Maria Cadeddu and Jim Liljegren

Overview

- Microwave
 - MonoRTM
 - Comparisons with Rosenkranz model
 - Validation with ground-based instruments
- Infrared
 - Updates to LBLRTM
 - » CO2 line mixing
 - » CO2 continuum
 - Validation with aircraft and satellite instruments
- Summary

What is 'Truth'?

- 'Truth' at the Level Required is not readily available
 - sonde accuracies; spatial and temporal sampling
 - laboratory measurements

•

- Spectral Residuals are Key!
- Consistency within a band system
- Consistency between bands
 - AIRS v_2 and v_3 bands to investigate consistency for CO₂
- Consistency between species
 - TES: temperature from O_3 and H_2O consistent with CO_2 ; N_2O
- Consistency between instruments
- Consistency between infrared and microwave

Microwave

Microwave topics

- MonoRTM
- Recent updates to MonoRTM
 - -Water vapor
 - -Oxygen
- Differences from the Rosenkranz model
- Validation against ground-based measurements

MonoRTM

- Microwave monochromatic radiative transfer model
 - "laser" i.e. single frequency version of LBLRTM
- Developed at AER
- Useful range
 - 0-1648 GHz
- Spectroscopic parameters from external line file
 - HITRAN 2000 with specific updates/modifications
 - » 22 GHz and 183 GHz line intensities from Clough et al (1973)
 - » Recent updates:
 - Other 22 GHz and 183 GHz line parameters from R. R. Gamache (2007)
 - Oxygen widths, line coupling parameters from Tretyakov et al (2005)
- Lineshape
 - Van-Vleck Weisskopf
- Continuum: CKD_2.4
 - Identical to MT_CKD in this region

MonoRTM and the Rosenkranz model: Differences

- Rosenkranz has made recent updates
 - Oxygen parameters
 - 183 GHz line width
 - Can now include certain ozone lines
- Updates in MonoRTM and Rosenkranz models bring results closer
- Important remaining differences:
 - Spectroscopic parameters
 - » Width of the 22 GHz water vapor line
 - » Temperature dependencies of widths
 - Continuum
 - » Foreign broadening
 - » Self broadening
 - Number of lines
 - » Rosenkranz does not include all lines or all species
 - » MonoRTM: line info from external file
 - Can include/exclude lines according to speed/accuracy requirements
 - Weak water vapor lines can have non-negligible effect

Brightness temperature comparisons: MonoRTM vs RK

• Same RT code used (different models used for optical depth calculations).

Water vapor line parameters

22 GHz line	α_{f}	X _f	α_{s}	X _s	S	Ε"	shift
MonoRTM 2007	0.0913	0.76	0.44	0.76	4.438E-25	446.511	-0.000088
Rosenkranz 2007 (HITRAN units)	0.0959	0.69	0.46	0.61	4.319E-25	447.047	-0.000084
Rosenkranz 1998 (HITRAN units)	0.0959	0.69	0.46	0.61	4.319E-25	447.047	0

183 GHz line	α_{f}	X _f	α_{s}	X _s	S	Ε"	shift
MonoRTM 2007	0.0997	0.77	0.45	0.77	7.691E-23	136.164	-0.00269
Rosenkranz 2007 (HITRAN units)	0.0993	0.64	0.51	0.85	7.646E-23	139.285	-0.00238
Rosenkranz 1998 (HITRAN units)	0.0959	0.64	0.51	0.85	7.646E-23	139.285	-0.00163

Water vapor: Line widths

width will lead to inconsistency between eg AMSU/AMSR-E and SSMIS!

frequency [GHz]

Water vapor continuum

Ozone: Difference in upwelling spectra

US standard PWV=1.4 cm

Sub-arctic winter PWV = 0.41 cm

Impact on AMSU 183+/-1 GHz channel

Validation of microwave spectroscopy using ground-based radiometers

- MWRP at NSA
 - Oxygen band
- MWR and MWRP at SGP
 - 22 GHz water vapor line
 - Water vapor continuum
- GVR at NSA
 - 183 GHz water vapor line
 - Oxygen band
- GSR at NSA
 - Water vapor continuum

Water vapor line widths: comparisons with data

Oxygen region: model/measurement comparisons

- Mean and SD of measurement/model differences from the NSA site
- 14 months of data from MWRP
 - Channels at 51.25, 52.28, 53.85, 54.94, 56.66, 57.29, 58.88 GHz
- 1 month of data from GSR (larger standard deviations)
 - Channels at 50.3, 51.76, 52.725, 53.29, 53.845, 54.4, 54.94 GHz
- Large differences at 52.28 GHz believed to be due to instrument calibration

Microwave Summary

- Recent updates in MonoRTM and Rosenkranz bring results closer
- Main differences between MonoRTM (2007) and Rosenkranz (2007):
 - Width of 22 GHz water vapor line
 - Water vapor continuum
- Ground-based validation supports MonoRTM water vapor parameters
- Inclusion of ozone can be important
- Future work:
 - Continued validation at ARM sites
 - Consistency between microwave and infrared (AERI instrument at NSA)
 - Zeeman line splitting

Infrared

LBLRTM

Line-by-line radiative transfer model

- Recent updates to LBLRTM
- Validation against measurements

Line Parameters

- **HITRAN:** reference source for **'AER'** Line Parameters
- Substitutions are only made for very specific reasons and only with extensive validation
- aer_v_1.0 (0 -122,656 cm-1)
- tes v 1.3 (500 3500 cm-1)
- Water Vapor 1.
 - HITRAN 2000 + Update 1.1 (Toth et al.)
- **Carbon Dioxide** 2.
 - **HITRAN 2000**
 - Line Coupling (Hartmann et al.)
- Ozone 3.
 - MIPAS (Wagner at al.; Flaud et al.)

Continuum: MT_CKD_1.3

- Water Vapor
 - Self / Foreign
 - Single Line Shape for each
- **Carbon Dioxide**
 - v_2 and v_3 regions scaled based on this study
 - Continuuing Research Focus
- **Nitrogen: Collision Induced**
 - 2330 cm-1 Region
 - Continuuing Research Focus
- **Oxygen: Collision Induced** - 1600 cm-1 Region Scaled

Line Coupling

Lorentz $k_{i}(v) = \frac{1}{\pi} \frac{S_{i}}{(v - v_{i})^{2} + \alpha_{i}^{2}} \left[1 + y_{i}(v - v_{i}) \right]$

y_i: line coupling coefficient

Up to now in LBLRTM:

•Q branch line coupling modeled explicitly

•P & R branch line coupling accounted for in CO2 continuum and in duration of collision effects

Update to LBLRTM:

• P & R branch line coupling for CO2 from Jean-Michel Hartmann's group

Line Coupling Parameters for the 5 < 2 Band

Duration of Collision Effects

Lorentz

$$k_{i}(v) = \frac{1}{\pi} \frac{S_{i}}{\left(v - v_{i}\right)^{2} + \alpha_{i}^{2}} \qquad \left[\chi\left(v - v_{i}\right)\right]$$

 χ_i : duration of collision

LBLRTM Chi Factor for CarbonDioxide

Line Coupling - Duration of Collision

SHIS Analysis from AURA Validation Experiment Gulf of Mexico - no sonde

Impact on Temperature Profile Reference: GMAO

Retrieved v10.1

monotonic

SHIS Analysis from AFWEX Experiment Oklahoma SGP - sonde

M. W. Shephard and S. A. Clough, (AER) 13 Jun 06 13:34

Impact on Temperature Profile Reference: Radiosonde

ARM TWP case

LBLRTM v10.3 P & R branch line coupling

 CO_2

Impact on Temperature Profile Reference: ARM TWP Sonde

Recent updates to LBLRTM: Summary

- Forward Model for Temperature Retrievals significantly improved
 - P-R line coupling is a key element
- Carbon Dioxide:
 - χ factor and continuum strongly influenced by line coupling
 - need to introduce small χ factor for duration of collision effects
 - CO₂ Continuum has been reduced by 25% for best fit at bandhead
- v_2 and v_3 are apparently not yet fully consistent
- Updated Code and Line Parameters to be made public
 - separate Line Coupling file (Hartmann) available: TAPE2
- Spectral Residuals will likely become the validation criterion

Future Plans

- Further work on CO₂ continuum
- Line Coupling for N₂O
- Line Coupling for CH₄
- Work with Larrabee Strow on LBLRTM/SARTA comparisons

Improved Spectroscopy for Microwave and Infrared Satellite Data Assimilation

J.-L. Moncet, S. A. Clough and V. Payne, AER, Inc.

Summary of Accomplishments

- Microwave
 - Updates to O₂ line widths and line coupling in MonoRTM
 - Updates to water vapor line parameters in MonoRTM
 - Validation of updates using ground-based measurements
- Infrared
 - Implementation of P&R line coupling in $CO_2 v_2$ and v_3 regions
 - Updates to CO₂ continuum
 - Improvements in consistency between v_2 and v_3 regions

Future Work

- Microwave
 - Implementation of Zeeman line splitting
 - Continued validation at ARM sites
 - Infrared/Microwave consistency
- Infrared:
 - Further improvements to CO₂ continuum
 - P&R branch line coupling for CH_4 and N_2O
 - Work with Larrabee Strow on LBLRTM/SARTA comparisons

Figure 2: Temperature retrievals using LBLRTM v10.3